Ecological polyfunctionality of microorganisms and plant-microbial complexes in bioremediation of polluted soils

  • Yaroslav K. Kulikou Belarussian State University

Abstract

Mechanisms of biosorption and biodegradation of pollutants in the soil, associated with a number of physiological and biochemical characteristics of microorganisms and depending on their species diversity and specific action, are revealed. The role and importance of microorganisms is noted on the example of cyanobacteria, micromycetes and algae as effective soil bioremediators. A promising direction for improving the processes of bioremediation of soil ecosystems is the use of algalcyanobacterial communities. Cyanobacterial associations exhibit particular resistance to pollutants. They are able to adapt to oil, petroleum products, heavy metals, chemical weapons destruction products, maintain the oxidative level of ecosystems due to the release of oxygen, and increase the number of heterotrophic satellites in associations. Cyanobacterial biological preparations in combination with mineral fertilizers, when applied to oil-contaminated soils, activate oil degradation processes. In many respects, the degradation ability of cyanobacteria in relation to oil is explained by the fact that favorable conditions are created in the colonial mucus of cyanobacteria for the development of other microorganisms. It has been shown that the biosorption function of cyanobacteria is influenced by their population density, the degree of aggregation, the time of contact with the pollutant and its concentration. The optimal parameters of the status of cyanobacteria for their use as biosorbents have been revealed. Among the most important aspects of the associative interaction of actinomycetes with phytocenoses can be named such as the role of these microorganisms in regulating the number and composition of their microflora (control of phytopathogens) and increasing the ability of plants to withstand a variety of abiotic stresses, including drought, salinization, soil contamination with heavy metals and other xenobiotics. The largest group of bioactive secondary metabolites of actinomycetes are antibiotics with antibacterial, antifungal, antiprotozoal and antiviral activity. The antibiotics produced by them can be active in natural conditions and have significance in the fate of other microorganisms in the root zone of plants. The ability of actinomycetes to form antibiotics is based on the competitive relationships of microorganisms in their natural habitat.

Author Biography

Yaroslav K. Kulikou, Belarussian State University

doctor science (biology), professor at the department of general ecology and methods of teaching biology.

References

  1. Kondakova LV. Algo-cianobakterial’naja flora i osobennosti ee razvitija v antropogenno narushennyh pochvah (na primere pochv podzony juzhnoj tajgi Evropejskoj chasti Rossii) [Algo-cyanobacterial flora and features of its development in anthropogenically disturbed soils (on the example of soils of the southern taiga subzone of the European part of Russia)] [PhD disertation]. Syktyvkar: [publisher unknown]; 2012. 356 p. Russian.
  2. Ashikhmina TYa, Alalykina NM. Biologicheskij monitoring prirodno-tehnogennyh system [Biological monitoring of natural and man-made systems]. Syktyvkar: [publisher unknown]; 2011. 388 p. Russian.
  3. Nozhevnikova AN. Bioremediacija zagrjaznennyh pochv i gruntov. Ekologiya mikroorganizmov [Bioremediation of contaminated soils and soils. Ecology of microorganisms]. Moscow: Publishing center «Academy»; 2004. p. 196–199. Russian.
  4. Skvortsova TA. Bioremediacija pochvy associativnymi uglevodorodokisljajushhimi mikroorganizmami [Bioremediation of soil. by associative hydrocarbon-oxidizing microorganisms]. Byulleten VIUA. 2002;116:445–447. Russian.
  5. Giridhar BA, Shea PJ, Oh BT. Trichoderma sp. PDRI-7 promotes Pinus sylvestris reforestation of lead-contaminated mine tailing sites. Total Environment. 2014;476–477:561–567.
  6. Grigorieva EN, Smirnova ON, Smirnov VF, Kryazhev DV. Mikromicety pochvy poligona tverdyh bytovyh othodov «Igumnovo» [Micromycetes of the soil of the Igumnovo solid waste landfill]. Mikology and phytopathology. 2015;49(5):286–292. Russian.
  7. Domracheva LI, Trefilova LV, Kovina AL, Gornostaeva EA, Kazakova DV, Subbotina ES. Mikrobnaja introdukcija i sostojanie pochvennoj aborigennoj mikroflory [Microbial introduction and state of soil native microflora]. Theoretical and applied ecology. 2015;2:55–59. Russian.
  8. Shabaev VP. Postuplenie svinca v rastenija iz zagrjaznennoj tjazhelym metallom pochvy pri inokuljacii roststimulirujushhimi rizosfernymi bakterijami [The entry of lead into plants from soil contaminated with heavy metal during inoculation with growth-stimulating rhizospheric bacteria]. Izvestiya RAS. The series is biological. 2014;4:424–432. Russian.
  9. Gradova NB, Gornova IB, Eddaudi R, Salina RN. Ispol’zvanie bakterij roda Azotobacter pri bioremediacii neftezagrjaznennyh pochv [The use of bacteria of the genus Azotobacter in bioremediation of oil-contaminated soils]. Applied biochemistry and microbiology. 2003;39(3):318–321. Russian.
  10. Iliev I, Petkov G, Lukavsky J. An approach to bioremediation of mineral oil polluted soil. Genetic and Plant Physiology. 2015;5(2):162–169.
  11. Silabarasan SJ. Abraham Ecofriendly method for bioremediation of chlorpyrifos from agricultural soil by novel fungus Aspergillus terreus, JASI. Water, Air and Soil Pollution. 2013;224(1):1369/1–1369/11.
  12. Kruglov YuV, Paromenskaya LN. Mikrobiologicheskie faktory bioremediacii pochvy, zagrjaznennoj gerbicidom prometrinom. [Microbiological factors of bioremediation soil contaminated with the herbicide promethrin]. Agricultural Biology. Ser. Plant Biology. 2011;3:76–80. Russian.
  13. Kim AA, Pestsov GV, Yadgarov HT, Dzhumaniyazova GI, Zinoviev PV, Juraeva GT, Abdukarimov AA, Gins VK. Mikroorganizmy – destruktory polihlorirovannyh bifenilov [Microorganisms – destructors of polychlorinated biphenyls]. Prikladnaja biochemistry and microbiology. 2004;40(1):70–73. Russian.
  14. Domracheva LI, Kondakova LV, Popov LB, Zykova YuI. Bioremediacionnye vozmozhnosti pochvennyh cianobakterij [Bioremediation capabilities of soil cyanobacteria]. Theoretical and applied ecology. 2009;1:8–17. Russian.
  15. Domracheva L, Trefilova L, Fokina A. Fuzarii: biologicheskij kontrol’, sorbcionnye vozmozhnosti [Fusarii: biological control, sorption]. Saarbrucken, Deutschland: Lap Lambert Academic Publishing; 2013. 182 p. Russian.
  16. Fokina AI, Domracheva LI, Shirokikh IG, Kondakova LV, Ogorodnikova SYu. Mikrobnaja detoksikacija tjazhelyh metallov (obzor) [Microbial detoxification of heavy metals (review)]. Theoretical and Applied Ecology. 2008;1:4–10. Russian.
  17. Samsonova A, Aleshenkova ZM, Semochkina NF. Mikrobnyj preparat «Rodobel» dlja ochistki pochvy ot nefti [Microbial preparation «Rodobel» for soil purification from oil]. In: Biotechnology – state and prospects of development. Materials of the II International Congress. Moscow: CJSC «PEAK “Maxima», D. I. Mendeleev Russian Technical University; 2003. Part 2. p. 40–41. Russian.
  18. Soprunova OB, Utepesheva AA. Novye shtammy bakterij-destruktorov PAV [New strains of bacteria-destructors of surfactants]. In: Modern problems of physiology, ecology and biotechnology of microorganisms. Materialy Vserossijskogo simposiuma s mezhdunarodnym uchastiem. Moscow: MAKS Press; 2014. p. 219. Russian.
  19. Bukharin OV, Lobakova ES, Nemtseva NV, Cherkasov SV. Associativnyj simbioz [Associative symbiosis]. Yekaterinburg: Ural Branch of the Russian Academy of Sciences; 2007. 264 p. Russian.
  20. Srividya, S. А. Thapa, D.V. Bhat, К. Golmei, N. Dey Streptomyces sp. as effective biocontrol against chilli soilborne fungal phytopathogens. European Journal of Experimental Biology. 2012;2(1):163–173.
  21. Merzaeva OV, Shirokikh IG. Kolonizacija aktinomicetami razlichnyh rodov prikornevoj zony rastenij [Colonization by actinomycetes of various genera of the root zone of plants]. Microbiology. 2006;75(2):271–276. Russian.
  22. Shanmuganathan K, Yasin J, Jayaprakasam M. Antibiotics in agriculture. Agriculture Today. 2001;6:40–41.
  23. Sysuev VA. Shirokikh IG, Merzaeva OV. Biological efficiency of Streptomyces hygroscopicus A-4 against phytopathogenic fungus Fusarium avenaceum 7/2 in the rhizosphere. Journal of Fungal Research. 2008;6(2):83–87.
  24. Nimnoi P, Pongsilp N, Lumyong S.Endophytic actinomycetes isolated from Aquilaria crassna Pierre ex Lec and screening of plant growth promoters production World Journal of Microbioljgy and Biotechnology. 2010;26;193–203.
  25. Zinniel DK, Lambrecht P, Harris NB, Feng Z, Kuczmarski D, Higley P, Ishimaru CA, Arunakumari A, Barletta RG, Vidaver AK. Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Applied and environmental microbiology. 2002;68:2198–2208.
  26. Merzaeva OV, Shirokikh IG. Obrazovanie auksinov jendofitnymi aktinobakterijami ozimoj rzhi [Formation of auxins by endophytic actinobacteria of winter rye]. Applied biochemistry and microbiology. 2010;45(1):51–57. Russian.
  27. Aly MM, El-Sayed H, El-Sayed A, Jastaniah SD. Synergistic Effect between Azotobacter vinelandii and Streptomyces sp. Isolated From Saline Soil on 246 Seed Germination and Growth of Wheat Plant. Journal of American Science. 2012;8(5):667–676.
  28. Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA, Bailey JF, Morra MJ. Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Applied and environmental microbiology. 2002;68:2161–2171.
  29. Haferburg G, Groth I, Möllmann U, Kothe E, Sattler I. Arousing sleeping genes: shifts in secondary metabolism of metal tolerant actinobacteria under conditions of heavy metal stress. Biometals. 2009;22:225–234.
  30. Solovyova ES, Shirokikh IG. Osobennosti rosta izoljatov streptomicetov v prisutstvii tjazhelyh metallov [Features of growth of streptomyces isolates in the presence of heavy metals]. In: Factors of plant and microorganism resistance in extreme natural conditions and technogenic environment. Materials of the All-Russian Scientific Conference with international. with the participation of the school of young scientists. Irkutsk: Publishing House of the V. B. Sochava Institute of Geography SB RAS; 2016. p. 226–227. Russian.
  31. Tikhonovich IA, Provorov NA. Simbiozy rastenij i mikroorganizmov: molekuljarnaja genetika agrosistem budushhego [Symbioses of plants and microorganisms: molecular genetics of agricultural systems of the future]. Saint Petersburg: Publishing House of Saint Petersburg University; 2009. 210 p. Russian.
  32. Muratova AYu, Bondarenko AD, Panchenko LV, Turkovskaya OV. Ispol’zovanie kompleksnoj fitoremediacii dlja ochistki pochvy, zagrjaznennoj nefteshlamom [The use of complex phytoremediation for cleaning soil contaminated with oil sludge]. Biotechnology. 2010;1:77–84. Russian.
  33. Al-Ghazawi Z, Saadoun I, Al-Shak ah A. Selection of bacteria and plant seeds for potential use in the remediation of diesel contaminated soils. Journal of Basic Microbiology. 2005;45(4):251–256.
  34. Khabibullina FM. Pochvennaja mikobiota estestvennyh i antropogenno narushennyh jekosistem severo-vostoka Evropejskoj chasti Rossii [Soil mycobiota of natural and anthropogenic disturbed ecosystems of the North-east of the European part of Russia] [PhD dissertation]. Syktyvkar: [publisher unknown]; 2009. 40 p. Russian.
  35. Galchenko SV, Mazhaysky YuA. Fitomelioracija kak sposob detoksikacii zagrjaznennyh tjazhelymi metallami gorodov [Phytomelioration as a method of detoxification of cities polluted with heavy metals]. Melioration and environment. Moscow: All-Russian Research Institute of Hydraulic Engineering and Melioration; 2004. Volume 2. p. 3–6. Russian.
  36. Ekman S, Campbell EL, Meeks JC, Flores EA. Nostoc punctiforme sugar transporter necessary to establish a cyanobacterium-plant symbiosis. Plant Physioljgy. 2013;161(4):1984–1992.
  37. Turkovskaya OV, Muratova AYu. Biodegradacija organicheskih polljutantov v kornevoj zone rastenij [Biodegradation of organic pollutants in the root zone of plants]. Molecular foundations of the relationship of associative microorganisms with plants. Moscow: Nauka; 2005. p. 180–208. Russian.
  38. Abdrakhmanova LR, Grigoriadi AS, Bakaeva MD, Kireeva NA. Soobshhestvo mikroskopicheskih gribov v jekotoksikologicheskoj ocenke fitoremediacii neftezagrjaznennyh pochv [Community of microscopic fungi in ecotoxicological assessment of phytoremediation of oil-contaminated soils]. In: Environment and management of natural resources: Abstracts of reports of the 2nd International Conference, Tyumen. Tyumen: [publisher unknown]; 2011. p. 143–145. Russian.
  39. Stepanok VV, Yudkin LYu, Rabinovich RM. Vlijanie bakterizacii semjan associativnymi diazotrofami na postuplenie svinca i kadmija v rastenija jachmenja [The effect of bacterization of seeds by associative diazotrophs on the intake of lead and cadmium in barley plants]. Agrochemistry. 2003;5:69–80. Russian.
  40. Sizova OI, Lyubun EV, Kochetkov VV, Validov SZ, Boronin AM. Vlijanie prirodnyh i geneticheski modificirovannyh rizosfernyh bakterij Pseudomonas aureofaciens na nakoplenie mysh’jaka rastenijami [Influence of natural and genetically modified rhizosphere bacteria Pseudomonas aureofaciens on arsenic accumulation by plants]. Biochimia and microbiologia. 2004;40(1):78–82. Russian.
Published
2024-05-20
Keywords: soil bioremediation, native microflora, degrading microorganisms, cyanobacteria, plant-actinomycete complexes, plant-microbial interactions
How to Cite
Kulikou, Y. (2024). Ecological polyfunctionality of microorganisms and plant-microbial complexes in bioremediation of polluted soils. Journal of the Belarusian State University. Ecology, 4, 4-15. Retrieved from https://journals.bsu.by/index.php/ecology/article/view/6399
Section
The Study and Rehabilitation of Ecosystems