Parameters of the transition of radionuclides into the biomass of miscanthus gigantus on the lands of the exclusion zone of the Polesie State Radiation-Ecological Reserve

  • Evgeniy B. Evseev Polesie State Radiation-Ecological Reserve
  • Maxim V. Kudin Polesie State Radiation-Ecological Reserve
  • Dmitry K. Garbaruk Polesie State Radiation-Ecological Reserve
  • Alesya N. Voronetskaya Polesie State Radiation-Ecological Reserve
  • Alexander V. Dragun Gomelab Technologies LLC

Abstract

The article describes a new culture for Belarus, Miscanthus gigantus, introduced in the conditions of Belarusian Polesie, and also describes its biological and environmental features. It is proposed to use the studied crop for energy purposes. It is assumed that growing plants for energy purposes in Belarus is most promising in the natural and climatic conditions of the Gomel region. The cultivation of miscanthus contributes to solving a number of significant environmental issues. First of all, it ensures obtaining a sustainable harvest of high-quality crop products, which increases the efficiency of using
low-fertile lands. Secondly, it improves the humus state and stabilizes the pool of mobile forms of ash elements in the soil, thereby preventing the increasing depletion of its fertility and degradation. The characteristics of the climatic conditions of growth during the experiment from 2020 to 2023 are given. Experimental activities for growing miscanthus gigantus variety «Druzhba-Avtyuki» in the exclusion zone of the Polesie State Radiation-Ecological Reserve are described. The parameters of accumulation of Cs137 and Sr90 in the vegetative mass of the plant were determined. The maximum permissible densities of soil contamination were calculated when growing the plant under study for various technical purposes. When growing miscanthus of the giant variety «Druzhba-Avtyuki» on sod-podzolic sandy and sod-podzolic gleyic soils for the production of wood technical raw materials, wood fuel and other non-food forestry products, it is possible without restrictions onthe density of contamination with Cs137. At the same time, obtaining normatively pure biomass of the studied crop on soddy-podzolic soils that are temporarily excessively moistened imposes restrictions on the density of soil contamination with cesium-137: 27,85 Ci/km2 – for other non-food forestry products; 22,3 Ci/km2 – for wood technical raw materials; 11,1 Ci/km2 – for wood fuel. It is suggested that there are prospects for using plant raw materials of giant miscanthus, grown on radioactively contaminated lands, for technological purposes (to produce cellulose, biodiesel, biogas), subject to additional research and development of technological operations at real production facilities.

Author Biographies

Evgeniy B. Evseev, Polesie State Radiation-Ecological Reserve

PhD (agriculture); head of the department of radiation and environmental monitoring.

Maxim V. Kudin, Polesie State Radiation-Ecological Reserve

PhD (agriculture), docent; deputy director for research.

Dmitry K. Garbaruk, Polesie State Radiation-Ecological Reserve

head of the department of ecology of plant complexes.

Alesya N. Voronetskaya, Polesie State Radiation-Ecological Reserve

junior researcher at the department of ecology of plant complexes.

Alexander V. Dragun, Gomelab Technologies LLC

director; owner of the "Druzhba-Avtyuki" variety.

References

  1. Belarus’ i Chernobyl’: 34 goda spustya. Informacionno-analiticheskie materialy [Belarus and Chernobyl: 34 years later. Information and analytical materials]. Minsk: IVC Minfina; 2020. 38 p. Russian.
  2. Cybul’ko NN. Radioaktivnoe zagryaznenie territorii Belarusi: dinamika i sovremennoe sostoyanie [Radioactive contamination of the territory of Belarus: dynamics and current state]. Ekologicheskij vestnik BGU. 2012;2(1):80–85. Russian.
  3. Velichko VV, Ulasevich MV. Analiz effektivnosti ispol’zovaniya biogazovyh ustanovok [Analysis of the efficiency of using biogas plants]. In: Basalaj IA, editor. Sbornik materialov 73-j studencheskoj nauchno-tekhnicheskoj konferencii. Minsk: BNTU; 2017. p. 49–55. Russian.
  4. Loseva LA. Vozdelyvanie energeticheskih travyanistyh rastenij v usloviyah vostochnoj chasti Belarusi [Cultivation of energy herbaceous plants in the conditions of the eastern part of Belarus]. In: Makovskaya NV, editor. Problemy ustojchivogo razvitiya regionov Respubliki Belarus’ i sopredel’nyh stran: sbornik nauchnyh statej HI mezhdunarodnoj nauchno-prakticheskoj internetkonferencii. Mogilev: MGU imeni A. A. Kuleshova; 2022. p. 8–11. Russian.
  5. Shklyar AH. Klimaticheskie resursy Belorussii i ispol’zovanie ih v sel’skom hozyajstve [Climatic resources of Belarus and their utilization in agriculture]. Minsk: Vyshejshaya shkola; 1973. 4 32 p. Russian.
  6. Kupcov NS, Popov EG. Energoplantacii. Spravochnoe posobie po ispol’zovaniyu energeticheskih rastenij [Energoplantations. Reference manual on the use of energy plants]. Minsk: Tekhnalog iya; 2015. 128 p. Russian.
  7. Nijsen M, Smeets E, Stehfest E et al. An evaluation of the global potential of bioenergy production on degraded lands. Global Change Biology Bioenergy. 2012;4(2):130–147.
  8. Figala J, Vranova V, Rejsek K, Formanek P. Giant miscanthus (Miscantus x GiganteusGreef et Deu.) – A promising plant for soil remediation: A Mini Review. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis. 2015;63(6):2241–2246.
  9. Wang C, Kong Y, Hu R, Zhou G. Miscanthus: a fast-growing crop for environmental remediation and biofuel production. Global Change Biology Bioenergy. 2020;13(1):1–12.
  10. Zinchenko VA, Yashin M. Energiya miskantusa [The energy of miscanthus]. Lesprominform. 2011;6(80):134–140. Russian. 11. Kapustyanchik SY, Burmakina NV, Yakimenko VN. Ocenka ekologo-agrohimicheskogo sostoyaniya agrocenoza s mnogoletnim vyrashchivaniem miskantusa v Zapadnoj Sibiri [Assessment of ecological and agrochemical condition of agrocenosis with perennial cultivation of miscanthus in Western Siberia]. Agrohimiya. 2020;9:65–73. Russian.
  11. Gushchina VA, Ostroborodova NI. Formirovanie biomassy miskantusa gigantskogo v lesostepi Srednego Povolzh’ya [Formation of biomass of Miscanthus giganteus in the forest-steppe of the Middle Volga region]. Niva Povolzh’ya. 2019;3(52):81–87. Russian.
  12. Kapustyanchik SY, Yakimenko VN. Miskantus – perspektivnaya syr’evaya, energeticheskaya i fitomeliorativnaya kul’tura (literaturnyj obzor) [Miscanthus – promising raw material, energy and phytomeliorative crop (literature review)]. Pochvy i okruzhayushchaya sreda. 2020;3(3):126. Russian.
  13. Yan J, Chen W, Luo F, et al. Variability and adaptability of Miscanthus species evaluated for energy crop domestication. Global Change Biology Bioenergy. 2012;4(1):49–60.
  14. Hodkinson TR, Chase MW, Takahashi C, et al. The use of dna sequencing (ITS and trnL-F), AFLP, and fluorescent in situ hybridization to study allopolyploid Miscanthus (Poaceae). American Journal of Botany. 2002;89(2):279–286.
  15. Bonin CL, Mutegi E, Chang H, Heaton EA. Improved feedstock option or invasive risk? Comparing establishment and productivity of fertile miscanthus giganteus to miscanthussinensis. Bioenergy Research. 2017;10:317–328.
  16. Bagmet LV, Dzyubenko EA. Prognozirovanie oblastej kul’tivirovaniya Miscanthus sacchariflorus (Poaceae) na territorii Rossijskoj Federacii [Predicting areas of Miscanthus sacchariflorus (Poaceae) cultivation on the territory of the Russian Federation]. Vavilova. 2019;2(4):35–49. Russian.
  17. Bulatkin GA. Issledovanie effektivnosti energeticheskih kul’tur na primere miskantusa kitajskogo (Miscanthus sinensis Anderss) [Study of the efficiency of energy crops on the example of Chinese Miscanthus sinensis Anderss (Miscanthus sinensis Anderss)]. Ekologicheskij vestnik Rossii. 2018;10:36–41. Russian.
  18. Sakovich GV, Skiba EA, Gladysheva EK, Golubev DS, Budaeva VV. Miskantus – syr’e dlya proizvodstva bakterial’noj nanocellyulozy [Miscanthus – raw material for the production of bacterial nanocellulose]. Doklady Rossijskoj akademii nauk. Himiya, nauki o materialah. 2020;495:35–38. Russian.
  19. Gushchina VA, Ostroborodova NI. Formirovanie biomassy miskantusa gigantskogo v lesostepi Srednego Povolzh’ya [Formation of biomass of Miscanthus giganteus in the forest-steppe of the Middle Volga region.]. Niva Povolzh’ya. 2019;3(52):81–87. Russian.
  20. Dorogina OV, Vasil’eva OYu, Nuzhdina NS, et al. Formirovanie i izuchenie kollekcionnogo genofonda resursnyh vidov roda Miscanthus Anderss. v usloviyah lesostepi Zapadnoj Sibiri [Formation and study of the collection gene pool of resource species of the genus Miscanthus Anderss. in the conditions of the forest-steppe of Western Siberia]. Vavilovskij zhurnal genetiki i selekcii. 2019;23(7):926–932. Russian.
  21. Lewandowski I, Scurlock JMO, Lindvall E, Myrsini C. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass and Bioenergy. 2003;25(4):335–361.
  22. Blanco-Canqui H, Gilley J, Eisenhauer D, Boldt A. Soil carbon accumulation under switchgrass barriers. Agronomy Journal. 2014;106(6):2185–2192.
  23. Robertson AD, Davies Ch A, Smith P, et al. Carbon inputs from Miscanthus displace older soil organic carbon without inducing priming. BioEnergy Research. 2017;10:86–102.
  24. Kapustyanchik SY, Danilova AA, Lihenko IE. Miscanthus sacchariflorus v Sibiri. Parametry produkcionnogo processa, dinamika biofil’nyh elementov [Miscanthus sacchariflorus in Siberia. Parameters of the production process, dynamics of biophilic elements]. Sel’skohozyajstvennaya biologiya. 2021;1:25–33. Russian.
  25. Himken M, Lammel J, Neukirchen D, et al. Cultivation of Miscanthus under West European conditions: seasonal changes in dry matter production, nutrient uptake and remobilization. Plant and Soil. 1997;189:117–126.
  26. Lewandowski I, Kicherer A. Combustion quality of biomass: practical relevance and experiments to modify the biomass quality of Miscanthus x giganteus. European Journal of Agronomy. 1997;6(3–4):163–177.
  27. Lewandowski I, Clifton-Brown JC, Scurlock JMO. Miscanthus: European experience with a novel energy crop. Biomass and Bioenergy. 2000;19(4):209–227.
  28. Naidu SL, Moose SP, Al-Shoaibi AK, et al. Gold tolerance in Miscanthus x giganteus: adaptation in amounts and sequence of C4 photosynthetic enzymes. PlantPhyziology. 2003;132:1688–1697.
  29. Heaton EA, Flavell RB, Mascia PN, et al. Herbaceous energy crop development: recent progress and future prospects. Current Opinion in Biotechnology. 2008;19(3):202–209.
  30. Dospekhov BA. Metodika polevogo opyta [Methodology of field experience]. Moskva: Agropromizdat;1985. 351 p. Russian.
  31. Mel’nik VI, et al. Agroklimaticheskoe zonirovanie territorii Belarusi s uchetom izmeneniya klimata [Agroclimatic zoning of the territory of Belarus taking into account climate change]. Minsk – Zheneva: [publisher unknown]; 2017. p. 6–8. Russian.
  32. Cybul’ko NN, Shashko AV, Zhukova II, Evseev EB. Vliyanie azotnyh i kalijnyh udobrenij na nakoplenie 137Cs mnogoletnimi bobovo-zlakovymi i zlakovymi travami na torfyanyh pochvah [Effect of nitrogen and potassium fertilizers on 137Cs accumulation by perennial legume-grass and cereal grasses on peat soils]. Melioraciya. 2021;4(98):35–45. Russian.
  33. Evseev EB, Kudin MV, Garbaruk DK, Voroneckaya AN, Dragun AV. Perspektivnaya energeticheskaya kul’tura miscánthus giganteus na zagryaznennyh radionuklidami zemlyah. Radiobiologiya i ekologicheskaya bezopasnost’ – 2024 [Prospective energy crop miscánthus giganteus on radionuclide-contaminated lands]. In: Sbornik nauchnyh statej po materialam mezhdunarodnoj nauchnoj konferencii. Gomel’: Institut radiobiologii NAN Belarusi; 2024. p. 85–88. Russian.
Published
2025-01-09
Keywords: giant miscanthus, Cs137, Sr90, transition parameters, maximum permissible densities of soil pollution, technological goals
How to Cite
Evseev, E., Kudin, M., Garbaruk, D., Voronetskaya, A., & Dragun, A. (2025). Parameters of the transition of radionuclides into the biomass of miscanthus gigantus on the lands of the exclusion zone of the Polesie State Radiation-Ecological Reserve. Journal of the Belarusian State University. Ecology, 4, 44-54. Retrieved from https://journals.bsu.by/index.php/ecology/article/view/6618
Section
Radioecology and Radiobiology, Radiation Safety