The front tibia of the european rhinoceros beetle (Oryctes nasicornis (Linnaeus, 1758) as a bionic prototype for modeling the row сrop cultivator sweep

Abstract

The basic principles of bionic modeling and design as an important part of ecological knowledge are considered. The importance of using bionic design as a regenerative approach in the design of parts and their individual elements is pointed out. The importance of using natural objects to create fundamentally new technical solutions and adaptation of individual elements into already created technologies in agriculture is emphasized. Information is given about the possibility of using the tibiae of the european rhinoceros beetle (Oryctes nasicornis (Linnaeus, 1758) for bionic modeling of lancet legs of cultivators. For this purpose, the parts of the insect – the anterior tibiae, which experience the greatest load during movement in organic substrate of plant origin or forming soil environment, were considered. A bionic analog was chosen due to the similarity of the functions performed and wear resistance. Information on the mechanics of insect movement and some peculiarities of biology is given. The unique morphological features of rhinoceros beetle tibiae are considered, in particular, their adapted form and functional characteristics. The presence of teeth rounded to the apex at the working part of the tibia is indicated. In the space between the teeth there are rounded, flattened to the edge notches. Electron scanning microscopy allowed to establish the sculpture of the surface of the serrated edge of the tibiae. The morphology of the surface of the working part of the tibiae has a porous structure. Individual lines form tortuous tubules of different depth. The analysis of elemental composition allowed to reveal the presence of aluminum in the structure of the external skeleton of the dentary edge of the tibiae. For an objective assessment and development of the most effective technological solutions, it is proposed to analyze similar parts of the legs of representatives of the family Scarabaeidae. Based on the results of the research, a hypothesis is put forward to use the serrated edge of the tibiae of the rhinoceros beetle in the design of lancet feet of cultivators, by creating cladding or overlays of wear-resistant materials on the working surface. In this case, the general structure of the tibia can serve as an object for adaptation and creation of fundamentally new solutions in agricultural mechanics, characterized by high efficiency, wear resistance and environmental friendliness.

Author Biographies

Aleh V. Sinchuk, Belarusian State University

senior lecturer at the department of physical geography of the world and educational technologies, faculty of geography and geoinformatics; co-coordinator UNESCO department in science education with emphasis on natural sciences.

Dmitrii G. Zhorov, Belarusian State University

PhD (biology), associate professor at the department of physical geography of the world and educational technologies, faculty of geography and geoinformatics; deputy
head of the General directorate of science – head of the
department of postgraduate and doctoral studies.

References

  1. Li M, Yang Y, Guo L, Chen D, Sun H, Tong J. Design and analysis of bionic cutting blades using finite element method. Applied Bionics and Biomechanics. 2015:1–7. DOI: https://doi.org/10.1155/2015/471347.
  2. Hayes S, Desha C, Baumeister D. Learning from nature – Biomimicry innovation to support infrastructure sustainability and resilience. Technological Forecasting and Social Change. 2020;161:120287. DOI: https://doi.org/10.1016/j.techfore.2020.12.
  3. Blok V. Biomimicry and the materiality of ecological technology and innovation: toward a natural model of nature. Environmental Philosophy. 2016;13(2):195–214. DOI: https://doi.org/10.5840/envirophil201692035.
  4. Forbes P. The Gecko’s Foot. Bio-inspiration–Engineered From Nature. London: Fourth Estate; 2005. 292 p.
  5. Myers W. Biodesign: Nature, Science, Creativity. London: Thames & Hudson; 2012. 304 p.
  6. Harman J. The Shark’s Paintbrush. Ashland: White Cloud Press; 2014. 326 p.
  7. Benyus JM. Biomimicry: Innovation Inspired by Nature. New York: Harper Perennial; 2002. 308 p.
  8. Азаренко ВВ, Голдыбан ВВ, Бегун ПП. Методические подходы передачи решений от биологии к инженерии. Механизация и электрификация сельского хозяйства. 2023;56:3–8.
  9. Benyus JM. A biomimicry primer. Biomimicry 3.8 Resource Handbook. Missoula: Biomimicry Group Inc.; 2011. 280 p.
  10. Li G, Meng H. Overview of crack self-healing. Recent Advances in Smart Selfhealing Polymers and Composites. 2015:1–19. DOI: https://doi.org/10.1016/B978-1- 78242-280-8.00001-7.
  11. Kumar Ramesh V, Bhuvaneshwari B, Maheswaran S, Palani SG, Ravisankar K, Iyer NR. An overview of techniques based on biomimetics for sustainable development of concrete. Current Science. 2011;101(6):741–747.
  12. Reap J, Baumeister D, Bras B Holism, biomimicry and sustainable engineering. In: ASME International Mechanical Engineering Conference and Exposition, 2005 November 5–11. Orlando: [publisher unknown]; 2005. p. 423–431. DOI: https://doi.org/10.1115/ IMECE2005-81343.
  13. Pedersen Zari M, Storey JB. An ecosystem based biomimetic theory for a regenerative built environment. In: International Conference on Sustainable Construction, Materials and Practices: Challenge of the Industry for the New Millennium, 2007 September 12–14. Lisbon: IOS Press; 2007. p. 620–627.
  14. Reap JJ. Holistic Biomimicry: A Biologically Inspired Approach to Environmentally Benign Engineering. ProQuest Dissertations Publishing Dissertation/Thesis. Atlanta: Georgia Institute of Technology; 2009. 899 p.
  15. De Pauw IC, Karana E, Kandachar P, Poppelaars F. Comparing biomimicry and cradle to cradle with ecodesign: a case study of student design projects. Journal of Cleaner Production. 2014;78:174–183. DOI: https://doi.org/10.1016/j.jclepro.2014.04.077.
  16. Бабицкий ЛФ, Москалевич ВЮ, Соболевский ИВ. Развитие бионического направления в земледельческой механике. Аграрная наука Евро-Северо-Востока. 2017;4:69–74.
  17. Zhang Z, Wang X, Tong J, Stephen C. Innovative design and performance evaluation of bionic imprinting toothed wheel. Applied Bionics and Biomechanics. 2018. p. 1–11. DOI: https://doi.org/10.1155/2018/9806287.
  18. Maohua X, Kaixin W, Wang Y, Weichen W, Feng J. Design and Experiment of Bionic Rotary Blade Based on Claw Toe of Gryllotalpa orientalis Burmeister. Transactions of the Chinese Society of Agricultural Machinery. 2021;52(2):55–63.
  19. Голдыбан ВВ. Использование бионических принципов при решении отдельных задач земледельческой механики. Механизация и электрификация сельского хозяйства. 2022;55:36–40.
  20. Голдыбан ВВ, Синчук ОВ, Ткаченко ГА, Курилович МИ. Исследование мандибул черного садового муравья в качестве бионической модели для повышения надежности культиваторных лап. Механизация и электрификация сельского хозяйства. 2022;55:251–258.
  21. Sinchuk AV, Logachev MA. Prospects of using the mandibles of the black garden ant (Lasius niger (Linnaeus, 1758)) in designing wear-resistant working surfaces of cultivator rake tines. Young scientist. 2024;1:261–265.
  22. Синчук ОВ, Логачёв МА, Лисовская ЕИ. Перспективы использования личинок обыкновенного муравьиного льва как бионического прототипа для проектирования износостойких рабочих поверхностей стрельчатых лап культиваторов. В: Проблема оценки, мониторинга и сохранения биоразнообразия. Материалы пятой Республиканской научно-практической экологической конференции, г. Брест, 23 ноября 2023 г. Брест: БрГУ; 2023. с. 273–276.
  23. Медведев СИ. Пластинчатоусые (Scarabaeidae). Подсем. Euchirinae, Dynastinae, Glaphyrinae, Trichiinae. Москва; Ленинград: Изд. АН СССР; 1960. 399 с. Серия Фауна СССР. Жесткокрылые.
  24. Семёнов-Тян-Шанский АП, Медведев СИ. Жуки-носороги (Oryctes I11.) русской и среднеазиатской фаун (Coleoptera, Scarabaeidae). Ежегодник Зоологического музея Академии Наук СССР. 1931;32(4):481–502.
  25. Шиленков ВГ. Редкие жужелицы (Coleoptera, Carabidae) Байкальского региона и принципы охраны насекомых. Известия Иркутского государственного университета. Серия Биология. Экология. 2010;3(1):37–41.
  26. Емцев АА, Берников КА, Акопян ЭК. О расширении границ ареалов некоторых видов животных в северной части Западной Сибири. Мир науки, культуры, образования. 2012;6:471–477.
  27. Медведев СИ. Личинки пластинчатоусых жуков. Москва; Ленинград: Издательство АН СССР; 1952. 342 с.
  28. Николаев ГВ. Пластинчатоусые жуки (Coleoptera, Scarabaeoidea) Казахстана и Средней Азии. Алма-Ата: Наука; 1987. 232 с.
  29. Aleksandrowicz O, Pisanenko A, Ryndevich S, Saluk S. The check-list of Belarus Coleoptera. Słupsk: Pomeranian University; 2023. 189 p.
  30. Соболевский ИВ. Бионическое обоснование конструкции ротационного рыхлителя почвы. Известия сельскохозяйственной науки Тавриды. 2019;20:78–90.
  31. Бабицкий ЛФ, Соболевский ИВ, Куклин ВА, Исмаилов ЯН. Теоретические предпосылки к бионическому обоснованию параметров рабочих органов кольчато-режущего почвообрабатывающего катка. Аграрная наука Евро-Северо-Востока. 2018;6:121–127.
  32. Соболевский ИВ. Исследования качества поверхностной обработки почвы упругими S-образными стойками с регуруемой жесткостью культиватора-плоскореза КПП-3. Известия сельскохозяйственной науки Тавриды. 2020;21:106–116.
  33. Chinary M. Collins guide to the insects of Britain and Western Europe. London: Collins; 1993. 320 p.
  34. Просвиров АС. Атлас жуков средней полосы России. Москва: Издательство «Фитон XXI»; 2018. 272 с.
  35. Zhang Y, Zhou C, Ren L. Biology Coupling Characteristics of Mole Crickets’ Soil-Engaging Components. Journal of Bionic Engineering. 2008;5:164–171. DOI: https://doi.org/10.1016/s1672-6529(08)60089-x.
  36. Ткаченко ГА, Синчук ОВ, Голдыбан ВВ, Ковальчук АВ. Повышение надежности культиваторных лап за счет упрочнения рабочих поверхностей на основе бионического подхода. В: Современные технологии для заготовительного производства [Интернет]. Сборник научных работ Республиканской научно-технической конференции профессорско-преподавательского состава, научных работников, докторантов и аспирантов МТФ БНТУ, 14 апреля 2021 г. Минск: БНТУ; 2021:149–151.
Published
2024-08-07
Keywords: bionics, eco-innovation, agricultural mechanics, applied biology, agriculture, Scarabaeidae
Supporting Agencies The research was carried out within the framework of the research work «Study of wear-resistant bioinspired working surfaces of the row crop cultivator sweep for planting vegetable crops» State Research Program «Agricultural Technologies and Food Security». The authors are grateful to the Center for Collective Use of Unique Scientific Equipment «Belarusian Interuniversity Research Service Center» of the BSU Faculty of Physics and personally to the leading engineer of radiation and vacuum equipment of the research service sector S. V. Gusakova for her assistance in conducting research by electron microscopy methods.
How to Cite
Sinchuk, A., & Zhorov, D. (2024). The front tibia of the european rhinoceros beetle (Oryctes nasicornis (Linnaeus, 1758) as a bionic prototype for modeling the row сrop cultivator sweep. Journal of the Belarusian State University. Ecology, 2, 15-23. Retrieved from https://journals.bsu.by/index.php/ecology/article/view/6222
Section
The Study and Rehabilitation of Ecosystems