Построение гибридной логистической модели для выявления скрытых дефолтов по финансовой отчетности компаний

  • Артём Ильич Ткачёв Национальный банк Республики Беларусь, пр. Независимости, 20, 220008, г. Минск, Беларусь https://orcid.org/0000-0002-5316-8670

Аннотация

В данной работе рассмотрены подходы к построению моделей оценки кредитного риска. Целью работы является изучение количественных методов оценки кредитных рисков. В ходе исследования были обработаны и систематизированы финансовые данные компаний, проведён анализ и синтез данных, применены экономико-математические и статистические подходы. Описан процесс создания гибридной логистической модели множественного упорядоченного выбора, которая представляет собой систему из двух эконометрических моделей (линейной вероятностной модели и логит-модели). Полученные результаты как инструмент макропруденциального контроля имеют практическую значимость при проведении анализа реального сектора на микроданных.

Биография автора

Артём Ильич Ткачёв, Национальный банк Республики Беларусь, пр. Независимости, 20, 220008, г. Минск, Беларусь

главный специалист управления финансовой стабильности

Литература

  1. Totmianina KM. Review of models of default of probability. Upravlenie finansovymi riskami. 2011;1:12–24. Russian.
  2. Ohlson JA. Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research. 1980;18:109–131. DOI: 10.2307/2490395.
  3. Kubecová J, Vrchota J. The Taffler’s model and strategic management. The Macrotheme Review [Internet]. 2014 [cited 2021 March 15];3(2). Available from: http://macrotheme.com/yahoo_site_admin/assets/docs/16MR31Ku.1354035.pdf. Russian.
  4. Karminsky AM, Morgunov AV, Bogdanov PM. Assessment of the probability of default of project finance transactions. Journal of the New Economic Association. 2015;2(26):99–122. Russian.
  5. Malygin VI. Metody analiza mnogomernykh ekonometricheskikh modelei s neodnorodnoi strukturoi [Methods for the analysis of multivariate econometric models with a heterogeneous structure]. Minsk: Belarusian State University; 2014. Russian.
  6. Savitskaya GV. Ekonomicheskii analiz [Economic analysis].10th edition. Moscow: Novoe znanie; 2008. 640 p. Russian.
  7. Malygin VI, Grin NV, Milevsky PS, Zubovich AI, editors. Sistema statisticheskikh kreditnykh reitingov predpriyatii: metodika postroeniya, verifikatsii i primeneniya [The system of statistical credit ratings of enterprises: a method of construction, verification and application]. Minsk: National Bank of the Republic of Belarus; 2013. 75 p. (Bankawski vesnik. Issledovaniya banka № 5). Russian.
  8. Malygin VI, Pytlyak EV. [Assessment of the stability of banks on the basis of econometric models]. Bankawski vesnik. 2007;2:30–36. Russian.
  9. Shitikov VK, Rosenberg GS, Zinchenko TD. Kolichestvennaya gidroekologiya: metody sistemnoi identifikatsii [Quantitative hydroecology: methods of systemic identification]. Togliatti: Institute of Ecology of Volga Baisin of the Russian Academy of Sciences; 2003. 463 p. Russian.
  10. Magnus YaR, Katyshev PK, Peresetskiy AA. Ekonometrika. Nachal’nyi kurs [Econometrics. Initial course]. Moscow: Delo; 2004. 576 p. Russian.
  11. Tkatchev AI, Shipunov AV. [Credit scoring systems. Matrix approach]. Bankawski vesnik. 2019;10(674):37–46. Russian.
Опубликован
2021-11-26
Ключевые слова: балансовые показатели, оценка риска, скоринг-модели, микроданные, дефолт
Как цитировать
Ткачёв, А. И. (2021). Построение гибридной логистической модели для выявления скрытых дефолтов по финансовой отчетности компаний. Журнал Белорусского государственного университета. Экономика, 2, 26-38. Доступно по https://journals.bsu.by/index.php/economy/article/view/3756
Раздел
C. Математические и количественные методы