Building a hybrid logistics model to identify hidden defaults in the financial statements of companies

Abstract

В данной работе рассмотрены подходы к построению моделей оценки кредитного риска. Целью работы является изучение количественных методов оценки кредитных рисков. В ходе исследования были обработаны и систематизированы финансовые данные компаний, проведён анализ и синтез данных, применены экономико-математические и статистические подходы. Описан процесс создания гибридной логистической модели множественного упорядоченного выбора, которая представляет собой систему из двух эконометрических моделей (линейной вероятностной модели и логит-модели). Полученные результаты как инструмент макропруденциального контроля имеют практическую значимость при проведении анализа реального сектора на микроданных.

Author Biography

Artem I. Tkatchev, National Bank of the Republic of Belarus, 20 Niezaliežnasci Avenue, Minsk 220008, Belarus

chief specialist, Financial Stability Department

References

  1. Totmianina KM. Review of models of default of probability. Upravlenie finansovymi riskami. 2011;1:12–24. Russian.
  2. Ohlson JA. Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research. 1980;18:109–131. DOI: 10.2307/2490395.
  3. Kubecová J, Vrchota J. The Taffler’s model and strategic management. The Macrotheme Review [Internet]. 2014 [cited 2021 March 15];3(2). Available from: http://macrotheme.com/yahoo_site_admin/assets/docs/16MR31Ku.1354035.pdf. Russian.
  4. Karminsky AM, Morgunov AV, Bogdanov PM. Assessment of the probability of default of project finance transactions. Journal of the New Economic Association. 2015;2(26):99–122. Russian.
  5. Malygin VI. Metody analiza mnogomernykh ekonometricheskikh modelei s neodnorodnoi strukturoi [Methods for the analysis of multivariate econometric models with a heterogeneous structure]. Minsk: Belarusian State University; 2014. Russian.
  6. Savitskaya GV. Ekonomicheskii analiz [Economic analysis].10th edition. Moscow: Novoe znanie; 2008. 640 p. Russian.
  7. Malygin VI, Grin NV, Milevsky PS, Zubovich AI, editors. Sistema statisticheskikh kreditnykh reitingov predpriyatii: metodika postroeniya, verifikatsii i primeneniya [The system of statistical credit ratings of enterprises: a method of construction, verification and application]. Minsk: National Bank of the Republic of Belarus; 2013. 75 p. (Bankawski vesnik. Issledovaniya banka № 5). Russian.
  8. Malygin VI, Pytlyak EV. [Assessment of the stability of banks on the basis of econometric models]. Bankawski vesnik. 2007;2:30–36. Russian.
  9. Shitikov VK, Rosenberg GS, Zinchenko TD. Kolichestvennaya gidroekologiya: metody sistemnoi identifikatsii [Quantitative hydroecology: methods of systemic identification]. Togliatti: Institute of Ecology of Volga Baisin of the Russian Academy of Sciences; 2003. 463 p. Russian.
  10. Magnus YaR, Katyshev PK, Peresetskiy AA. Ekonometrika. Nachal’nyi kurs [Econometrics. Initial course]. Moscow: Delo; 2004. 576 p. Russian.
  11. Tkatchev AI, Shipunov AV. [Credit scoring systems. Matrix approach]. Bankawski vesnik. 2019;10(674):37–46. Russian.
Published
2021-11-26
Keywords: balance sheet indicators, risk assessment, model scoring, microdata, default
How to Cite
Tkatchev, A. I. (2021). Building a hybrid logistics model to identify hidden defaults in the financial statements of companies. Journal of the Belarusian State University. Economics, 2, 26-38. Retrieved from https://journals.bsu.by/index.php/economy/article/view/3756
Section
C. Mathematical and Quantitative Methods