Comparison of ARCH models in forecasting volatility on the EUR/USD currency market

  • Raman E. Hretski UE «DataMola», 5 Lapacina Street, Minsk 220086, Belarus
  • Irina A. Karachun Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

Abstract

In this paper the generalized autoregressive conditional heteroscedastic models were applied for modeling volatility of the exchange rate of EUR / USD for daily observations using dataset of period starting 1 January 2010 to 30 December 2016. The paper analyzes both asymmetric and symmetric models that found numerous facts about exchange rate returns such as volatility clustering and leverage effect. The performance of GARCH and GARCH-M models as well EGARCH, GJR-GARCH and APARCH (models with different residual distributions were analyzed to a given dataset. The best models for forecasting volatility of EUR/USD exchange rates are APARCH, GJR-GARCH and EGARCH model with Student’s t-distribution.

Author Biographies

Raman E. Hretski, UE «DataMola», 5 Lapacina Street, Minsk 220086, Belarus

data scientist

Irina A. Karachun, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

PhD (economics), docent; head of the department of the corporate finance, fa culty of economics

References

  1. Black F. The Pricing of Options and Corporate Liabilities. J. Political Econ. 1973. No. 81. P. 637– 654.
  2. Black F. Studies of Stock Price Volatility Changes. Proceedings of the 1976 Meeting of the Business and Economic Statistics Section. Washington DC, 1976. P. 177–181.
  3. Bollerslev T. A Conditional Heteroskedasticity Time Series Model for Speculative Prices and Rates of Return. Rev. Econ. Stat. 1987. No. 69 (3). P. 542–547.
  4. Bollerslev T. Generalized Autoregressive Conditional Heteroscedasticity. J. Econom. 1986. No. 31 (3). P. 307–327.
  5. Engle R. F. Autoregressive Conditional Heteroskedasticity with the Estimates of the Variance of U.K. Inflation. Econometrica. 1982. No. 50. P. 987–1008.
  6. Engle R. F., David M., Russel P. Estimating time varying risk premia in the term structure: the ARCH-M model. Econometrica. 1987. No. 55. P. 391– 407.
  7. Gretskiy R. E., Karachun I. A. [Implementation of logit model in volatility forecasting of exchange rate]. Ekonomika, modelirovanie, prognozirovaniye [Economics, modelling, forecasting] : collect. of sci. works. Minsk, 2016. No. 10. P. 21–28.
Published
2018-10-24
Keywords: GARCH, GARCH-M, EGARCH, GJR-GARCH, APARC, volatility, forex market, forecast
How to Cite
Hretski, R. E., & Karachun, I. A. (2018). Comparison of ARCH models in forecasting volatility on the EUR/USD currency market. Journal of the Belarusian State University. Economics, 1, 4-13. Retrieved from https://journals.bsu.by/index.php/economy/article/view/2232
Section
C. Mathematical and Quantitative Methods