Sato – Beckmann classification of accounting for technological progress: genesis, generalisation, and extension

  • Guennadi A. Khatskevich School of Business, Belarusian State University, 7 Špaliernaja Street, Minsk 220004, Belarus
  • Andrei F. Pranevich Yanka Kupala State University of Grodno, 22 E. Ažeška Street, Hrodna 230023, Belarus https://orcid.org/0000-0002-8714-0203

Abstract

In this paper, we consider inverse problems of identifying dynamic aggregated production functions from given conditions of neutrality of technological progress. Sets of production functions with Hicks neutral technological progress, Harrod neutral technological progress, and Solow neutral technological progress are described. The Sato – Beckmann classification of neutrality of technological progress for linear-homogeneous production functions is given. The Sato – Beckmann classification is generalised for general case of dynamic production function. Also, we supplemented the Sato – Beckmann classification with new conditions of neutrality of technological progress and obtained the corresponding forms of dynamic production functions. Using dependencies between three economic and mathematical characteristics of dynamic production function (elasticity of output with respect to capital, elasticity of output with respect to labour, and the factor proportions, the output-capital ratio, the output-labour ratio, the average product of generalised factor), we obtain new cases of neutrality of technological progress. By statistical data for 1990–2018, we built the dynamic production function with Hicks neutral technological progress for modeling the economic growth of the Republic of Belarus.

Author Biographies

Guennadi A. Khatskevich, School of Business, Belarusian State University, 7 Špaliernaja Street, Minsk 220004, Belarus

doctor of science (economics), full professor; head of the department of business administration

Andrei F. Pranevich, Yanka Kupala State University of Grodno, 22 E. Ažeška Street, Hrodna 230023, Belarus

PhD (mathematics and physics), docent; associate professor at the department of mathematics and computer science for economic systems, faculty of economics and management

References

  1. Pigou AC. The economics of welfare. London: Macmillan; 1920. 953 p.
  2. Hicks JR. The theory of wages. London: Macmillan; 1932. 247 p.
  3. Robinson J. Essays in the theory of employment. London: Macmillan; 1937. 201 p.
  4. Uzawa H. Neutral inventions and the stability of growth equilibrium. The Review of Economic Studies. 1961;28(2):117–124. DOI: 10.2307/2295709.
  5. Sato R, Beckmann MJ. Neutral inventions and production functions. The Review of Economic Studies. 1968;35(1):57–66. DOI: 10.2307/2974407.
  6. Stiglitz JE, Uzawa H, editors. Readings in the modern theory of economic growth. Cambridge: MIT Press; 1969. 497 p.
  7. Dadajan VS, editor. Modelirovanie narodno-khozyaistvennykh protsessov [Modeling of national economic processes]. Moscow: Ekonomika; 1973. 479 p. Russian.
  8. Plakunov MK, Rayatskas RL. Production functions in economic analysis. Vilnius: Mintis; 1984. 308 p. Russian.
  9. Barro RJ, Sala-i-Martin X. Economic growth. New York: McGraw-Hill; 1995. 539 p. Russian edition: Barro RJ, Sala-i-Martin X. Ekonomicheskii rost. Serova YuA, editor; Moiseev AN, Kapustina OV, translators. Moscow: BINOM. Laboratoriya znanii; 2017. 824 p.
  10. Kurzenev VA, Matveenko VD. Ekonomicheskii rost [Economic growth]. Saint-Petersburg: Piter; 2018. 608 p. Russian.
  11. Harrod RF. Essays in the theory of employment by Joan Robinson. The Economic Journal. 1937;47(186):326–330. DOI: 10.2307/2225532.
  12. Harrod RF. Towards a dynamic economics. 1st edition. London: Macmillan; 1948. 169 p.
  13. Besomi D. Harrod on the classification of technological progress. The origin of a wild-goose chase. Roncaglia A, editor. Banca Nazionale del Lavoro Quarterly Review. 1999;52(208):95–117.
  14. Solow RM. Technical progress, capital formation, and economic growth. American Economic Association. The American Economic Review. 1962;52(2):76–86.
  15. Ashmanov SA. Vvedenie v matematicheskuyu ekonomiku [Introduction to mathematical economics]. Moscow: Nauka; 1984. 296 p. Russian.
  16. Kleyner GB. Proizvodstvennye funktsii: teoriya, metody, primenenie [Production functions: theory, methods, application]. Moscow: Finansy i statistika; 1986. 239 p. Russian.
  17. Gorbunov VK. Proizvodstvennye funktsii: teoriya i postroenie [Production functions: theory and construction]. Ulyanovsk: Ul’yanovskii gosudarstvennyi universitet; 2013. 84 p. Russian.
  18. Tinbergen J. Professor Douglas’ production function. International Statistical Institute. Review of the International Statistical Institute. 1942;10(1/2):37–48. DOI: 10.2307/1401184.
  19. Beckmann MJ. Invariant relationships for homothetic production functions. In: Production theory. Proceedings of an International seminar held at the University of Karlsruhe; 1973 May – July; Karlsuhe, Germany. Lecture notes in economics and mathematical systems: mathematical economics. Karlsruhe: University of Karlsruhe; 1974;99:3–20.
  20. Morimoto Y. Neutral technical progress and the separability of the production function. The Economic Studies Quarterly. 1974;25(3):66–69.
  21. Robinson J. The classification of inventions. The Review of Economic Studies. 1938;5(2):139–142.
  22. Beckmann MJ, Sato R. Aggregate production functions and types of technical progress: a statistical analysis. The American Economic Review. 1969;59(1):88–101.
  23. Gehrig W. On certain concepts of neutral technical progress: definitions, implications and compatibility. In: Puu T, Wibe S, editors. The economics of technological progress: Proceedings of a conference held by the European Production Study Group in Umea; 1978 August 23–25; Umea, Sweeden. London: The Macmillan press LTD; 1980. p. 3–21.
  24. Khatskevich GA, Pranevich AF. [Quasi-homogeneous production functions with unit elasticity of factors substitution by Hicks]. Ekonomika, modelirovanie, prognozirovanie. 2017;11:135–140. Russian.
  25. Khatskevich GA, Pranevich AF. On quasi-homogeneous production functions with constant elasticity of factors substitution. Journal of Belarusian State University. Economics. 2017;1:46–50.
  26. Khatskevich GA, Pranevich AF. Production functions with given elasticities of output and production. Journal of Belarusian State University. Economics. 2018;2:13–21.
  27. Khatskevich G, Pranevich A, Karaleu Yu. Analytical forms of productions functions with given total elasticity of production. Advances in Intelligent Systems and Computing. 2019;1052:276–285.
  28. Khatskevich GA, Pranevich AF, Chaykovskiy MV. Two-factor production functions with given marginal rate of substitution. Ekonomicheskaya nauka segodnya. 2019;10:171–182. Russian.
  29. Egorov AI. Obyknovennye differentsial’nye uravneniya s prilozheniyami [Ordinary differential equations with applications]. Moscow: Fizmatlit; 2007. 448 p. Russian.
  30. Il’in VA, Pozniak EG. Osnovy matematicheskogo analiza. Chast’ I [Fundamentals of mathematical analysis. Part I]. Moscow: Nauka; 2000. 616 p. Russian.
  31. Fikhtengol’ts GM. Osnovy matematicheskogo analiza. Tom 1 [Fundamentals of mathematical analysis. Volume 1]. Saint-Petersburg: Lan’; 2001. 448 p. Russian.
  32. Kmenta J. On estimation of the CES production function. International Economic Review. 1967;8:180–189. DOI: 10.2307/2525600.
Published
2021-01-04
Keywords: production function, Hicks neutrality, Harrod neutrality, Solow neutrality, technological progress
How to Cite
Khatskevich, G. A., & Pranevich, A. F. (2021). Sato – Beckmann classification of accounting for technological progress: genesis, generalisation, and extension. Journal of the Belarusian State University. Economics, 2, 4-17. Retrieved from https://journals.bsu.by/index.php/economy/article/view/3421
Section
C. Mathematical and Quantitative Methods