Assessment of organic carbon dynamics in podzolized chernozem soil in field crop rotation under the climate change

  • Anatoliy N. Polevoy Odessa State Environmental University, 15 Lvivska Street, Odessa 65016, Ukraine https://orcid.org/0000-0001-8395-0068
  • Ludmila E. Bozko Odessa State Environmental University, 15 Lvivska Street, Odessa 65016, Ukraine

Abstract

The work presents assessment of organic carbon in the soil and СО2 – C emissions for the ten-field crop rotation in a changing climate conditions. The expected weather conditions for the 2021–2050 are estimated with RCP4.5 and RCP8.5 models. The research uses the updated model for the soil carbon cycle RothC-26.3, which describes the dynamics of four active and one inert compartments of the soil organic matter. The numerical studies consider three variants of the ten-fields crops rotation: 1) growing crops without fertilizing; 2) fertilization with mineral fertilizers in N45 P45 K45 and N90P90K 90 doses; 3) fertilization with organic fertilizers in the amounts of 9 and 18 t/ha. The research object is the balance of organic carbon in the soil and СО2 – C emissions from all crop rotation fields and the singular crop rotation field in the climate change conditions. 

Author Biographies

Anatoliy N. Polevoy, Odessa State Environmental University, 15 Lvivska Street, Odessa 65016, Ukraine

academician of the Higher School Academy of Sciences of Ukraine, doctor of science (geography), full professor; head of the department of agrometeorology and agroecology, Hydrometeorological Institute

Ludmila E. Bozko, Odessa State Environmental University, 15 Lvivska Street, Odessa 65016, Ukraine

PhD (geography), docent; associate professor at the department of agrometeorology and agroecology, Hydrometeorological Institute

References

  1. Trus OM, Gospodarenko GM, Prokopchuk IV. Gumus chornozemu opidzolenogo ta jogo vidtvorennja [Humus of black soils and his recreation]. Uman: Sochins’kyj M. M.; 2016. 227 p. Ukrainian.
  2. Brock C, Franko U, Oberholzer H-R, Kuka K, Leithold G, Kolbe H, et al. Humus balancing in Central Europe – concepts, state of the art, and further challenges. Journal of Plant Nutrition and Soil Science. 2013;176(1):3–11. DOI: 10.1002/jpln.201200137.
  3. Karmakar R, Das I, Dutta D, Rakshit A. Potential effects of climate change on soil properties: a review. Science International. 2016;4(2):51–73. DOI: 10.17311/sciintl.2016.51.73.
  4. Parton WJ, Scurlock JMO, Ojima DS, Schimel DS, Hall DO. Scopegram group members. Impact of climate change on grassland production and soil carbon worldwide. Global Change Biology. 1995;1(1):13–22. DOI: 10.1111/j.1365-2486.1995.tb00002.x.
  5. Grace PR, Post WM, Hennessy K. The potential impact of climate change on Australia’s soil organic carbon resources. Carbon Balance and Management. 2006;10:1–14. DOI: 10.1186/1750-0680-1-14.
  6. Davidson EA, Janssens IA. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature. 2006;440:165–173. DOI: 10.1038/nature04514.
  7. Smith J, Smith P, Wattenbach M, Zaehle S, Hiederer R, Jones RJA, et al. Projected changes in mineral soil carbon of European croplands and grasslands, 1990 –2080. Global Change Biology. 2005;11(12):2141–2152. DOI: 10.1111/j.1365-2486.2005.001075.x.
  8. Zaehle S, Bondeau A, Carter TR, Cramer W, Erhard M, Prentice IC, et al. Projected changes in terrestrial carbon storage in Europe under climate and land-use change, 1990 –2100. Ecosystems. 2007;10(3):380 – 401. DOI: 10.1007/s10021-007-9028-9.
  9. Muñoz-Rojas M, Jordán A, Zavala LM, González-Peñaloza FA, De la Rosa D, Pino-Mejias R, et al. Modelling soil organic carbon stocks in global change scenarios: a CarboSOIL application. Biogeosciences. 2013;10(12):8253– 8268. DOI: 10.5194/bg-10-8253-2013.
  10. Assessment of Climate Change for the Baltic Sea Basin. Berlin: Springer-Verlag; 2008. 474 p. (Regional Climate Studies).
  11. Ozturk I, Sharif B, Baby S, Jabloun M, Olesen JE. Long-term simulation of temporal change of soil organic carbon in Denmark: comparison of three model performances under climate change. The Journal of Agricultural Science. 2018;156(2):139 –150. DOI: 10.1017/S0021859617000971.
  12. Petersen BM, Knudsen MT, Hermansen JE, Halberg N. An approach to include soil carbon changes in life cycle assessments. Journal of Cleaner Production. 2013;52:217–224. DOI: 10.1016/j.jclepro.2013.03.007.
  13. Van Veen JA, Paul EA. Organic carbon dynamics in grassland soils. l. Background information and computer simulation. Canadian Journal of Soil Science. 1981;61(2):185–201. DOI: 10.4141/cjss81-024.
  14. Burke IC, Yonker CM, Parton WJ, Cole CV, Schimel DS, Flach K. Texture, climate, and cultivation effects on soil organic matter content in U. S. grassland soils. Soil Science Society of America Journal. 1989;53(3):800 – 805. DOI: 10.2136/sssaj1989.03615995005300030029x.
  15. Leite LFC, Doraiswamy PC, Causarano HJ, Gollany HT, Milak S, Mendonca ES. Modeling organic carbon dynamics under no-tillage and plowed systems in tropical soils of Brazil using CQESTR. Soil & Tillage Research. 2009;102(1):118 –125. DOI: 10.1016/ j.still.2008.08.003.
  16. Fayiga AO, Saha UK. Effect of climate change on soil productivity in developing countries. Asian Journal of Environment & Ecology. 2017;4(1):1–22. DOI: 10.9734/AJEE/2017/35485.
  17. Abberton M, Conant R, Batello C, editors. Grassland carbon sequestration: management, policy and economics. Proceedings of the Workshop on the role of grassland carbon sequestration in the mitigation of climate change; 2019 April; Rome, Italy. Rome: FAO; 2010. 338 p. (Integrated Crop Management; volume 11–2010).
  18. Stepanenko SM, Polevoy AN, editors. Klimatychni ryzyky funkcionuvannja galuzej ekonomiky Ukrai’ny v umovah zminy klimatu [Climatic risks of functioning of industries of economy of Ukraine in the conditions of change of climate]. Odessa: TES; 2018. 548 p. Ukrainian.
  19. Coleman K, Jenkinson DS. RothC-26.3 – а model for the turnover of carbon in soil. In: Powlson DS, Smith P, Smith JU, editors. Evaluation of soil organic matter models: using existing long-term datasets. Berlin: Springer-Verlag; 1996. p. 237–246. (NATO ASI Series I; volume 38).
  20. Polevoy AN. Teoriya i raschet produktivnosti sel’skokhozyaistvennykh kul’tur [Theory and calculation of the productivity of agricultural cultures]. Leningrad: Gidrometeoizdat; 1983. 175 p. Russian.
  21. Hospodarenko HM, Trus OM, Prokopchuk ІV. Conditions of conservation of humus content in a field crop rotation. Biologichni systemy. 2012;4(1):31–34. Ukrainian.
  22. Novikov AA, Kisarov OP. Statements for the role of root and aftermath residues in agrocenoses. Nauchnyi zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta [Internet]. 2012 [cited 2019 February 1];78(04). Available from: http://ej.kubagro.ru/2012/04/pdf/36.pdf. Russian.
  23. Vleeshouwers LM, Verhagen A. Carbon emission and sequestration by agricultural land use: a model study for Europe. Global Change Biology. 2002;8(6):519 –530. DOI: 10.1046/j.1365-2486.2002.00485.x.
  24. Syabruk OP. Estimation of carbon losses from chernozem typical under different soil tillage and fertilization systems. In: Agrochemistry and Soil Science. Issue 80. Kharkiv: Institute for Soil Science and Agrochemistry Research named after O. N. Sokolovsky; 2013. p. 140 –146. Ukrainian.
  25. Shilova NA. Dynamics of allocation CO 2 in crops of field cultures on sod-podzolic and peat soils. Pochvovedenie i agrokhimiya. 2014;1:104 –113. Russian.
  26. Feizienė D, Kadžienė G. The influence of soil organic carbon, moisture and temperature on soil surface CO 2 emission in the 10 th year of different tillage-fertilisation management. Zemdirbyste-Agriculture. 2008;95(4):29 – 45.
Published
2019-11-28
Keywords: balance, carbon, crop rotation, precipitation, air temperature, mineral fertilizers, organic fertilizers, moisture coefficient
How to Cite
Polevoy, A. N., & Bozko, L. E. (2019). Assessment of organic carbon dynamics in podzolized chernozem soil in field crop rotation under the climate change. Journal of the Belarusian State University. Geography and Geology, 2, 65-78. https://doi.org/10.33581/2521-6740-2019-2-65-78