On continuous solutions of the Cauchy problem for equations of fractional order

  • Petr P. Zabreiko Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus
  • Svetlana V. Ponomareva Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

Abstract

It is studied the nonlocal conditions of solving Cauchy-type problem for fractional differential equations with  Riemann – Liouville derivatives in some special function space. The Cauchy problem is reduced to a the finding fixed  point of an integral operator A, then is constructed an invariant set for A (the «shift» of a ball from the space of continuous  functions, and then it is applied the Schauder anf Banach – Caccioppoli fixed point principles. As a result, the conditions  of solvability and unique solvability for the Cauchy problem under consideration are given.

Author Biographies

Petr P. Zabreiko, Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

doctor of science (physics and mathematics),  full professor; professor at the department of functional analysis and analytical economics, faculty of mechanics and mathematics

Svetlana V. Ponomareva, Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

PhD (physics and mathematics), docent; associate professor at the department of general mathematics and computer science, faculty of mechanics and mathematics

References

  1. Kilbas AA, Srivastava HM, Trujillo JJ. Theory and Applications of Fractional Differential Equations. North­Holland Mathematics Studies 204. New York: Elsevier science; 2006. 523 p.
  2. Gorenflo R, Mainardi F. Fractional calculus: integral and differential equations of fractional order. In: Fractal and Fractional Calculus in Continuum Mehanics (Udine, 1996). CISM Courses and Lectures. 1997;378:223–276.
  3. Kilbas АА. New trends on fractional integral and differential equations. Uchenye zapiski Kazanskogo universiteta. Seriya: Fiziko­matematicheskie nauki. 2005;147(1):72–106.
  4. Zabreiko PP, Ponomareva SV. [Cauchy Problem for Riemann – Liouville fractional derivative equations]. Doklady of the National Academy of Sciences of Belarus. 2018;62(4):391–397. Russian. DOI: 10.29235/1561-8323-2018-6.
  5. Krasnosel’skii MA, Zabreiko PP, Pustylnik EI, Sobolevskii PE. Integral’nye operatory v prostranstvakh summiruemykh funktsii [Integral operators in spaces of summable functions]. Moscow: Nauka; 1966. 500 p. Russian.
  6. Zabreiko PP, Koshelev AI, Krasnosel’skii MA, Mikhlin SG, Rakovshchik LS, Stetsenko VYa. Integral’nye uravneniya [Integral equations]. Moscow: Nauka; 1968. 448 p. Russian.
  7. Zabreiko PP. Volterra integral operators. Uspekhi matematicheskikh nauk [Russian Mathematical Surveys]. 1967;22(1):167–168. Russian.
  8. Zabreiko PP. [On the spectral radius of integral Volterra operators]. Litovskii matematicheskii sbornik [Lithuanian Mathematical Journal]. 1967;2:281–287. Russian.
Published
2019-01-19
Keywords: Cauchy problem, fractional Riemann – Liouville derivative, the Schauder fixed point principle, the Banach – Сaccioppoli fixed point principle
How to Cite
Zabreiko, P. P., & Ponomareva, S. V. (2019). On continuous solutions of the Cauchy problem for equations of fractional order. Journal of the Belarusian State University. Mathematics and Informatics, 3, 39-45. Retrieved from https://journals.bsu.by/index.php/mathematics/article/view/1011