On some classes of sublattices of the subgroup lattice
Abstract
In this paper G always denotes a group. If K and H are subgroups of G, where K is a normal subgroup of H, then the factor group of H by K is called a section of G. Such a section is called normal, if K and H are normal subgroups of G, and trivial, if K and H are equal. We call any set S of normal sections of G a stratification of G, if S contains every trivial normal section of G, and we say that a stratification S of G is G-closed, if S contains every such a normal section of G, which is G-isomorphic to some normal section of G belonging S. Now let S be any G-closed stratification of G, and let L be the set of all subgroups A of G such that the factor group of V by W, where V is the normal closure of A in G and W is the normal core of A in G, belongs to S. In this paper we describe the conditions on S under which the set L is a sublattice of the lattice of all subgroups of G and we also discuss some applications of this sublattice in the theory of generalized finite T-groups.
References
- Wielandt H. Eine Verallgemenerung der invarianten Untergruppen. Mathematische Zeitschrift. 1939;45(1):209 –244. DOI: 10.1007/BF01580283.
- Kegel OH. Untergruppenverbände endlicher Gruppen, die Subnormalteilorverband echt enthalten. Archiv der Mathematik. 1978; 30(1):225–228. DOI: 10.1007/BF01226043.
- Ballester-Bolinches A, Ezquerro LM. Classes of Finite Groups. Dordrecht: Springer; 2006. 381 p. (Mathematics and its applications; volume 584). DOI: 10.1007/1-4020-4719-3.
- Ballester-Bolinches A, Doerk K, Pèrez-Ramos MD. On the lattice of F-subnormal subgroups. Journal of Algebra. 1992;148(1): 42–52. DOI: 10.1016/0021-8693(92)90235-E.
- Vasil’ev AF, Kamornikov SF, Semenchuk VN. [On lattices of subgroups of finite groups]. In: Beskonechnye gruppy i primykayushchie algebraicheskie struktury [Infinite groups and related algebraic structures]. Kiev: Institute of Mathematics of National Academy of Sciences of Ukraine; 1993. p. 27–54. Russian.
- Doerk K, Hawkes T. Finite soluble groups. Berlin: Walter de Gruyter; 1992. 910 p. (de Gruyter expositions in mathematics; book 4).
- Shemetkov LA, Skiba AN. Formatsii algebraicheskikh sistem [Formations of algebraic systems]. Moscow: Nauka; 1989. 256 p. Russian.
- Hu B, Huang J, Skiba AN. Finite groups with only F-normal and F-abnormal subgroups. Journal of Group Theory. 2019;22: 915–926. DOI: 10.1515/jgth-2018-0199.
- Chi Z, Skiba AN. On two sublattices of the subgroup lattice of a finite group. Journal of Group Theory. 2019;22(6):1035–1047. DOI: 10.1515/jgth-2019-0039.
- Chi Z, Skiba AN. On a lattice characterization of finite soluble PST-groups. Bulletin of the Australian Mathematical Society. 2019;99(3):1– 8. DOI: 10.1017/S0004972719000741.
- Skiba AN. On s-subnormal and s-permutable subgroups of finite groups. Journal of Algebra. 2015;436:1–16. DOI: 10.1016/j. jalgebra.2015.04.010.
- Shemetkov LA. Formatsii konechnykh grupp [Formations of finite groups]. Moscow: Nauka; 1978. 272 p. Russian.
- Ballester-Bolinches A, Esteban-Romero R, Asaad M. Products of Finite Groups. Berlin: Walter de Gruyter; 2010. (de Gruyter expositions in mathematics; volume 53). DOI: 10.1515/9783110220612.
- Agrawal RK. Finite groups whose subnormal subgroups permute with all Sylow subgroups. Proceedings of the American Mathematical Society. 1975;47:77–83. DOI: 10.1090/S0002-9939-1975-0364444-4.
- Robinson DJS. The structure of finite groups in which permutability is a transitive relation. Journal of the Australian Mathematical Society. 2001;70(2):143–160. DOI: 10.1017/S1446788700002573.
- Brice RA, Cossey J. The Wielandt subgroup of a finite soluble groups. Journal of the London Mathematical Society. 1989; 40(2):244 –256. DOI: 10.1112/jlms/s2-40.2.244.
- Beidleman JC, Brewster B, Robinson DJS. Criteria for permutability to be transitive in finite groups. Journal of Algebra. 1999; 222(2):400 – 412. DOI: 10.1006/jabr.1998.7964.
- Ballester-Bolinches A, Esteban-Romero R. Sylow permutable subnormal subgroups of finite groups. Journal of Algebra. 2002; 251(2):727–738. DOI: 10.1006/jabr.2001.9138.
- Ballester-Bolinches A, Beidleman JC, Heineken H. Groups in which Sylow subgroups and subnormal subgroups permute. Illinois Journal of Mathematics. 2003;47(1–2):63– 69. DOI: 10.1215/ijm/1258488138.
- Ballester-Bolinches A, Beidleman JC, Heineken H. A local approach to certain classes of finite groups. Communications in Algebra. 2003;31(12):5931–5942. DOI: 10.1081/AGB-120024860.
- Asaad M. Finite groups in which normality or quasinormality is transitive. Archiv der Mathematik. 2004;83(4):289–296. DOI: 10.1007/s00013-004-1065-4.
- Ballester-Bolinches A, Cossey J. Totally permutable products of finite groups satisfying SC or PST. Monatshefte für Mathematik. 2005;145(2):89 – 94. DOI: 10.1007/s00605-004-0263-9.
- Al-Sharo KA, Beidleman JC, Heineken H, Ragland MF. Some characterizations of finite groups in which semipermutability is a transitive relation. Forum Mathematicum. 2010;22(5):855–862. DOI: 10.1515/forum.2010.045.
- Beidleman JC, Ragland MF. Subnormal, permutable, and embedded subgroups in finite groups. Central European Journal of Mathematics. 2011;9(4):915–921. DOI: 10.2478/s11533-011-0098-8.
- Yi X, Skiba AN. Some new characterizations of PST-groups. Journal of Algebra. 2014;399:39–54. DOI: 10.1016/j.jalgebra. 2013.10.001.
- Skiba AN. Some characterizations of finite s-soluble PsT-groups. Journal of Algebra. 2018;495:114 –129. DOI: 10.1016/j. jalgebra.2017.11.009.
- Fattahi A. Groups with only normal and abnormal subgroups. Journal of Algebra. 1974;28(1):15–19. DOI: 10.1016/00218693(74)90019-2.
- Ebert G, Bauman S. A note on subnormal and abnormal chains. Journal of Algebra. 1975;36(2):287–293. DOI: 10.1016/00218693(75)90103-9.
- Semenchuk VN, Skiba AN. On one generalization of finite U-critical groups. Journal of Algebra and its Applications. 2016; 15(4):1650063. DOI: 10.1142/S0219498816500638.
- Monakhov VS. [Finite groups with abnormal and U-subnormal subgroups]. Sibirskii matematicheskii zhurnal. 2016;57(2): 447– 462. Russian. DOI: 10.17377/smzh.2016.57.217.
- Monakhov VS, Sokhor IL. [Finite groups with formation subnormal primary subgroups]. Sibirskii matematicheskii zhurnal. 2017;58(4):851– 863. Russian. DOI: 10.17377/smzh.2017.58.412.
- Monakhov VS, Sokhor IL. On groups with formational subnormal Sylow subgroups. Journal of Group Theory. 2018;21:273–287. DOI: 10.1515/jgth-2017-0039.
- Monakhov VS, Sokhor IL. Finite groups with abnormal or formational subnormal primary subgroups. Communications in Algebra. 2019;47(10):3941–3949. DOI: 10.1080/00927872.2019.1572174.
- Mal’tsev AI. Algebraicheskie sistemy [Algebraic systems]. Moscow: Nauka; 1970. 392 p. Russian.
- Schmidt R. Subgroup lattices of groups. Berlin: Walter de Gruyter; 1994. 572 p. (de Gruyter expositions of mathematics; volume 14).
- Zappa G. Sui gruppi finiti per cui il reticolo dei sottogruppi di composizione è modulare. Bollettino dell’Unione Matematica Italiana. Serie 3. 1956;11(3):315–318.
- Bray HB. Between nilpotent and solvable. Weinstein M, editor. Passaic: Polygonal Publishing House; 1982. 231 p.
- Doerk K. Minimal nicht überauflösbare, endlicher Gruppen. Mathematische Zeitschrift. 1966;91(3):198–205. DOI: 10.1007/ BF01312426.
- Kegel OH. Zur Struktur mehrafach faktorisierbarer endlicher Gruppen. Mathematische Zeitschrift. 1965;87(1):42– 48. DOI: 10.1007/BF01109929.
Copyright (c) 2019 Journal of the Belarusian State University. Mathematics and Informatics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who are published in this journal agree to the following:
- The authors retain copyright on the work and provide the journal with the right of first publication of the work on condition of license Creative Commons Attribution-NonCommercial. 4.0 International (CC BY-NC 4.0).
- The authors retain the right to enter into certain contractual agreements relating to the non-exclusive distribution of the published version of the work (e.g. post it on the institutional repository, publication in the book), with the reference to its original publication in this journal.
- The authors have the right to post their work on the Internet (e.g. on the institutional store or personal website) prior to and during the review process, conducted by the journal, as this may lead to a productive discussion and a large number of references to this work. (See The Effect of Open Access.)