On one rational integral operator of Fourier – Chebyshev type and approximation of Markov functions

Abstract

The purpose of this paper is to construct an integral rational Fourier operator based on the system of Chebyshev – Markov rational functions and to study its approximation properties on classes of Markov functions. In the introduction the main results of well-known works on approximations of Markov functions are present. Rational approximation of such functions is a well-known classical problem. It was studied by A. A. Gonchar, T. Ganelius, J.-E. Andersson, A. A. Pekarskii, G. Stahl and other authors. In the main part an integral operator of the Fourier – Chebyshev type with respect to the rational Chebyshev – Markov functions, which is a rational function of order no higher than n is introduced, and approximation of Markov functions is studied. If the measure satisfies the following conditions: suppμ = [1, a], a > 1, dμ(t) = ϕ(t)dt and ϕ(t) ἆ (t − 1)α on [1, a] the estimates of pointwise and uniform approximation and the asymptotic expression of the majorant of uniform approximation are established. In the case of a fixed number of geometrically distinct poles in the extended complex plane, values of optimal parameters that provide the highest rate of decreasing of this majorant are found, as well as asymptotically accurate estimates of the best uniform approximation by this method in the case of an even number of geometrically distinct poles of the approximating function. In the final part we present asymptotic estimates of approximation of some elementary functions, which can be presented by Markov functions.

Author Biographies

Pavel G. Patseika, Yanka Kupala State University of Grodno, 22 Ažeška Street, Hrodna 230023, Belarus

postgraduate student at the department of fundamental and applied mathematics, faculty of mathematics and informatics

Yauheni A. Rouba, Yanka Kupala State University of Grodno, 22 Ažeška Street, Hrodna 230023, Belarus

doctor of science (physics and mathematics), full professor; head of the department of fundamental and  applied mathematics, faculty of mathematics and informatics

Kanstantin A. Smatrytski, Yanka Kupala State University of Grodno, 22 Ažeška Street, Hrodna 230023, Belarus

PhD (physics and mathematics), docent; associate professor at the department of fundamental and applied mathematics, faculty of mathematics and informatics

References

  1. Gonchar AA. On the speed of rational approximation of some analytic functions. Matematicheskii sbornik. 1978;105(2):147–163. Russian.
  2. Ganelius Т. Orthogonal polynomials and rational approximation of holomorphic functions. In: Erdős P, Alpár L, Halász G, Sárközy A, editors. Studies in Pure Mathematics. Basel: Birkhäuser; 1978. p. 237–243. DOI: 10.1007/978-3-0348-5438-2_22.
  3. Andersson JE. Best rational approximation to Markov functions. Journal of Approximation Theory. 1994;76(2):219–232. DOI: 10.1006/jath.1994.1015.
  4. Pekarskii AA. Best uniform rational approximations to Markov functions. Algebra i analiz. 1995;7(2):121–132. Russian.
  5. Braess D. Rational approximation of Stieltjes functions by the Caratheodory – Fejer method. Constructive Approximation. 1987;3(1):43–50. DOI: 10.1007/BF01890552.
  6. Baratchart L, Stahl H, Wielonsky F. Asymptotic error estimates for L2 best rational approximants to Markov functions. Journal of Approximation Theory. 2001;108(1):53–96. DOI: 10.1006/jath.2000.3515.
  7. Prokhorov VA. On rational approximation of Markov functions on finite sets. Journal of Approximation Theory. 2015;191 Special number:94–117. DOI: 10.1016/j.jat.2014.10.006.
  8. Vyacheslavov NS, Mochalina EP. Rational approximations of functions of Markov – Stieltjes type in Hardy spaces H p, 0 < p ≤ ∞. Moscow University Mathematics Bulletin. 2008;63(4):125–134. DOI: 10.3103/S0027132208040013.
  9. Pekarskii AA, Rovba EA. Uniform approximations of Stieltjes functions by orthogonal projection on the set of rational functions. Matematicheskie zametki. 1999;65(3):362–368. Russian. DOI: 10.1007/BF02675071.
  10. Takenaka S. On the orthogonal functions and a new formula of interpolations. Japanese Journal of Mathematics. 1925;2:129–145. DOI: 10.4099/jjm1924.2.0_129.
  11. Malmquist F. Sur la détermination d’une classe de fonctions analytiques par leurs valeurs dans un ensemble donné de points. In: Comptes Rendus du Sixtiéme Congrés des mathématiciens scandinaves. Copenhagen: [publisher unknown]; 1926. p. 253–259.
  12. Dzhrbashyan MM, Kitbalyan AA. On a generalization of Chebyshev polynomials. Doklady Akademii nauk Armyanskoi SSR. 1964;38(5):263–270. Russian.
  13. Lungu KN. On best approximations by rational functions with a fixed number of poles. Matematicheskii sbornik. 1971;86(2):314–324. Russian.
  14. Lungu KN. On the best approximations by rational functions with a fixed number of poles. Sibirskii matematicheskii zhurnal. 1984;25(2):151–160. Russian.
  15. Rovba EA, Mikulich EG. Constants in rational approximation of Markov – Stieltjes functions with fixed number of poles. Vesnik Grodzenskaga dzjarzhawnaga wniversitjeta imja Janki Kupaly. Seryja 2. Matjematyka. Fizika. Infarmatyka, vylichalʼnaja tjehnika i kiravanne. 2013;1:12–20.
  16. Evgrafov MA. Asimptoticheskie otsenki i tselye funktsii [Asymptotic estimates and entire functions]. Moscow: Nauka; 1979. 320 p.
  17. Fedoryuk MV. Asimptotika: integraly i ryady [Asymptotics: integrals and series]. Moscow: Nauka; 1987. 544 p. Russian.
  18. Patseika PG, Rouba YA. Fejer means of rational Fourier – Chebyshev series and approximation of function x s. Journal of the Belarusian State University. Mathematics and Informatics. 2019;3:18–34. Russian. DOI: 10.33581/2520-6508-2019-3-18-34.
  19. Markov AA. Izbrannye trudy [Selected papers]. Moscow: Gostekhizdat; 1948. 412 p. Russian.
  20. Suetin PK. Klassicheskie ortogonal’nye mnogochleny [Classical orthogonal polynomials]. Moscow: Fizmatlit; 2005. 480 p. Russian.
  21. Dzhrbashyan MM. [On the theory of Fourier series in terms of rational functions]. Izvestiya AN ASSR. Seriya fiziko­matematicheskikh nauk. 1956;9(7):3–28. Russian.
  22. Rovba EA. [On a direct method in a rational approximation]. Doklady AN BSSR. 1979;23(11):968–971. Russian.
  23. Rovba EA, Mikulich EG. Constants in the approximation of x using the rational interpolation processes. Doklady of the National Academy of Sciences of Belarus. 2009;53(6):11–15. Russian.
  24. Mikulich EG. [Exact estimates of uniform approximations of function sinx by partial sums of Fourier series by rational functions]. Vestnik BGU. Seriya 1. Fizika. Matematika. Informatika. 2011;1:84–90. Russian.
  25. Bernstein SN. Sur la valeur asymptotique de la meilleure approximation des fonctions analytiques, admettant des singularités donnése. Bulletin de l’Académie Royale des Sciences, des Lettres et des Beaux­Arts de Belgique. 1913;2:76–90.
  26. Bernshtein SN. Ekstremal’nye svoistva polinomov i nailuchshee priblizhenie nepreryvnykh funktsii odnoi veshchestvennoi peremennoi. Chast’ 1 [Extremal properties of polynomials and the best approximation of continuous functions of one real variable. Part 1]. Moscow: Glavnaya redaktsiya obshchetekhnicheskoi literatury; 1937. 200 p. Russian.
  27. Rovba EA, Potseiko PG. [Approximation of a function x s on a segment [−1, 1] by partial sums of the rational Fourier – Chebyshev series]. Vesnik Grodzenskaga dzjarzhawnaga wniversitjeta imja Janki Kupaly. Seryja 2. Matjematyka. Fizika. Infarmatyka, vylichalʼnaja tjehnika i kiravanne. 2019;9(3):16–28. Russian.
  28. Rouba Y, Patseika P, Smatrytski K. On a system of rational Chebyshev – Markov fractions. Analysis Mathematica. 2018;44(1):115–140. DOI: 10.1007/s10476-018-0110-7.
  29. Rovba EA. An approximation of sinx by rational Fourier series. Matematicheskie zametki. 1989;46(2):52–59. Russian. DOI: 10.1007/BF01158146.
Published
2020-07-30
Keywords: Markov function, integral rational operator of Fourier type, Chebyshev – Markov rational function, majorant of uniform approximation, asymptotic estimate, best approximation, exact constant
How to Cite
Patseika, P. G., Rouba, Y. A., & Smatrytski, K. A. (2020). On one rational integral operator of Fourier – Chebyshev type and approximation of Markov functions. Journal of the Belarusian State University. Mathematics and Informatics, 2, 6-27. https://doi.org/10.33581/2520-6508-2020-2-6-27