Statistical forecasting of the dynamics of epidemiological indicators for COVID-19 incidence in the Republic of Belarus

  • Yuriy S. Kharin Research Institute for Applied Problems of Mathematics and Informatics, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus https://orcid.org/0000-0003-4226-2546
  • Valery A. Valoshka Research Institute for Applied Problems of Mathematics and Informatics, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus; Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus
  • Oksana V. Dernakova Research Institute for Applied Problems of Mathematics and Informatics, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus; Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus
  • Vladimir I. Malugin Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus
  • Alexey Yu. Kharin Research Institute for Applied Problems of Mathematics and Informatics, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus; Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

Abstract

The paper is devoted to the urgent problem of statistical forecasting for the dynamics of the main epidemiological indicators for the COVID-19 pandemic in the Republic of Belarus based on the observed time series. To solve this problem, five methods are proposed: forecasting method based on «moving trends»; local-median forecasting method; forecasting method based on discrete time series; forecasting method based on the vector econometric error correction model; method of sequential statistical analysis. Algorithms for computation of point and interval forecasts for the main epidemiological indicators have been developed. The numerical results of computer forecasting are presented on the example of the Republic of Belarus.

Author Biographies

Yuriy S. Kharin, Research Institute for Applied Problems of Mathematics and Informatics, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

corresponding member of the National Academy of Sciences of Belarus, doctor of science (physics andmathematics), full professor; director, Research Institute for Applied Problems of Mathematics and Informatics, Belarusian State University, and professor at the department of mathematical modeling and data analysis, faculty of applied mathematics and computer science, Belarusian State University 

Valery A. Valoshka, Research Institute for Applied Problems of Mathematics and Informatics, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus; Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

PhD (physics and mathematics); senior researcher at the laboratory of mathematical methods of information security, Research Institute for Applied Problems of Mathematics and Informatics, Belarusian State University, and associate professor at the department of mathematical modeling and data analysis, faculty of applied mathematics and computer science, Belarusian State University.

Oksana V. Dernakova, Research Institute for Applied Problems of Mathematics and Informatics, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus; Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

junior researcher at the sector of computer data analysis, laboratory of applied informatics

Vladimir I. Malugin, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

PhD (physics and mathematics); associate professor at the department of mathematical modeling and data analysis, faculty of applied mathematics and computer science

Alexey Yu. Kharin, Research Institute for Applied Problems of Mathematics and Informatics, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus; Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

doctor of science (physics and mathematics), docent; head of the department of probability theory and mathematical statistics, faculty of applied mathematics and computer science, Belarusian State University, and chief researcher at the laboratory of statistical analysis and modeling, Research Institute for Applied Problems of Mathematics and Informatics, Belarusian State University

References

  1. Kondratyev MA. [Forecasting methods and models of disease spread]. Komp’yuternye issledovaniya i modelirovanie. 2013;5(5):863–882. Russian. DOI: 10.20537/2076-7633-2013-5-5-863-882.
  2. Hirk R, Kastner G, Vana L. Investigating the dark figure of COVID-19 cases in Austria: borrowing from the decode genetics study in Iceland. Austrian Journal of Statistics. 2020;49(5):1–17. DOI: 10.17713/ajs.v49i4.1142.
  3. Fanelli D, Piazza F. Analysis and forecast of COVID-19 spreading in China, Italy and France. Chaos, Solitons and Fractals. 2020;134:109841. DOI: 10.1016/j.chaos.2020.109761.
  4. Kharin Yu. Robustness in statistical forecasting. New York: Springer; 2013. 356 p.
  5. Kharin YuS, Voloshko VA, Medved EA. Statistical estimation of parameters for binary conditionally nonlinear autoregressive time series. Mathematical Methods of Statistics. 2018;27:103–118. DOI: 10.3103/S1066530718020023.
  6. Valoshka VA, Kharin YuS. [Semibinomial conditionally nonlinear autoregression models of discrete random sequences: probabilistic properties and statistical estimation of parameters]. Diskretnaya matematika. 2019;31(1):72–98. Russian. DOI: 10.4213/dm1561.
  7. Kharin Yu, Zhurak M. Analysis of spatio-temporal data based on Poisson conditional autoregressive model. Informatica. 2015;26(1):67–87. DOI: 10.15388/Informatica.2015.39.
  8. Maevskii VV, Kharin YuS. Robust regressive forecasting under functional distortions in a model. Automation and Remote Control.2002;63(11):1803–1820. DOI: 10.1023/A:1020959432568.
  9. Pashkevich MA, Kharin YuS. Robust estimation and forecasting for beta-mixed hierarchical models of grouped binary data. Statistics and Operations Research Transactions. 2004;28(2):125–160.
  10. Bol’shev LN, Smirnov NV. Tablitsy matematicheskoi statistiki [Mathematical statistics tables]. Moscow: Nauka; 1983. 512 p. Russian.
  11. Kharin YuS, Zuev NM, Zhuk EE. Teoriya veroyatnostei, matematicheskaya i prikladnaya statistika [Probability theory, mathematical and applied statistics]. Minsk: Belarusian State University; 2011. 465 p. Russian.
  12. Kharin YuS. Optimal’nost’ i robastnost’ v statisticheskom prognozirovanii [Optimality and robustness in statistical forecasting]. Minsk: Belarusian State University; 2008. 265 p. Russian.
  13. Kharin Yu. Statistical analysis of discrete-valued time series by parsimonious high-order Markov chains. Austrian Journal of Statistics. 2020;49(4):76–88. DOI: 10.17713/ajs.v49i4.1132.
  14. Kedem B, Fokianos K. Regression models for time series analysis. Wiley: Hoboken; 2002. 326 p.
  15. Malugin VI. Metody analiza mnogomernykh ekonometricheskikh modelei s neodnorodnoi strukturoi [Methods for analyzing multivariate econometric models with a heterogeneous structure]. Minsk: Belarusian State University; 2014. 351 p. Russian.
  16. Colizza V, Barrat A, Barthelemy M, Vespignani A. Predictability and epidemic pathways in global outbreaks of infectious diseases: the SARS case study. BMC Medicine. 2007;5:34. DOI: 10.1186/1741-7015-5-34.
  17. Engle RF, Granger CWJ. Co-integration and error correction: representation, estimation and testing. Econometrica. 1987;55(2):251–276. DOI: 10.2307/1913236. JSTOR 1913236.
  18. Kermack WO, McKendrick AG. Contributions to the mathematical theory of epidemics – I. Bulletin of Mathematical Biology. 1991;53(1–2):33–55. DOI: 10.1007/BF02464423.
  19. Kharin YuS, Malugin VI, Kharin AYu. Ekonometricheskoe modelirovanie [Econometric modeling]. Minsk: Belarusian State University; 2003. 313 p. Russian.
  20. Johansen S. Likelihood-based inference in cointegrated vector autoregressive models. 2nd edition. Oxford: Oxford University Press; 1995. 267 р.
  21. Kharin AYu. Robastnost’ baiesovskikh i posledovatel’nykh statisticheskikh reshayushchikh pravil [Robustness of Bayesian and sequential statistical decision rules]. Minsk: Belarusian State University; 2013. 207 p. Russian.
  22. Kharin A, Tu TT. Performance and robustness analysis of sequential hypotheses testing for time series with trend. Austrian Journal of Statistics. 2017;46(3–4):23–36. DOI: 10.17713/ajs.v46i3-4.668.
  23. Kharin AYu. An approach to asymptotic robustness analysis of sequential tests for composite parametric hypotheses. Journal of Mathematical Sciences. 2017;227(2):196–203. DOI: 10.1007/s10958-017-3585-z.
Published
2020-12-08
Keywords: forecasting, probability model, time series, point forecast, interval forecast, COVID-19
Supporting Agencies This research is supported by the Ministry of Education of the Republic of Belarus. The authors are grateful to S. N. Staleuskaya, PhD (physics and mathematics), for development of the computer program for numeric results in section «Forecasting method based on “moving trends”» of this paper.
How to Cite
Kharin, Y. S., Valoshka, V. A., Dernakova, O. V., Malugin, V. I., & Kharin, A. Y. (2020). Statistical forecasting of the dynamics of epidemiological indicators for COVID-19 incidence in the Republic of Belarus. Journal of the Belarusian State University. Mathematics and Informatics, 3, 36-50. https://doi.org/10.33581/2520-6508-2020-3-36-50
Section
Probability Theory and Mathematical Statistics