Statistical forecasting of the dynamics of epidemiological indicators for COVID-19 incidence in the Republic of Belarus
Abstract
The paper is devoted to the urgent problem of statistical forecasting for the dynamics of the main epidemiological indicators for the COVID-19 pandemic in the Republic of Belarus based on the observed time series. To solve this problem, five methods are proposed: forecasting method based on «moving trends»; local-median forecasting method; forecasting method based on discrete time series; forecasting method based on the vector econometric error correction model; method of sequential statistical analysis. Algorithms for computation of point and interval forecasts for the main epidemiological indicators have been developed. The numerical results of computer forecasting are presented on the example of the Republic of Belarus.
References
- Kondratyev MA. [Forecasting methods and models of disease spread]. Komp’yuternye issledovaniya i modelirovanie. 2013;5(5):863–882. Russian. DOI: 10.20537/2076-7633-2013-5-5-863-882.
- Hirk R, Kastner G, Vana L. Investigating the dark figure of COVID-19 cases in Austria: borrowing from the decode genetics study in Iceland. Austrian Journal of Statistics. 2020;49(5):1–17. DOI: 10.17713/ajs.v49i4.1142.
- Fanelli D, Piazza F. Analysis and forecast of COVID-19 spreading in China, Italy and France. Chaos, Solitons and Fractals. 2020;134:109841. DOI: 10.1016/j.chaos.2020.109761.
- Kharin Yu. Robustness in statistical forecasting. New York: Springer; 2013. 356 p.
- Kharin YuS, Voloshko VA, Medved EA. Statistical estimation of parameters for binary conditionally nonlinear autoregressive time series. Mathematical Methods of Statistics. 2018;27:103–118. DOI: 10.3103/S1066530718020023.
- Valoshka VA, Kharin YuS. [Semibinomial conditionally nonlinear autoregression models of discrete random sequences: probabilistic properties and statistical estimation of parameters]. Diskretnaya matematika. 2019;31(1):72–98. Russian. DOI: 10.4213/dm1561.
- Kharin Yu, Zhurak M. Analysis of spatio-temporal data based on Poisson conditional autoregressive model. Informatica. 2015;26(1):67–87. DOI: 10.15388/Informatica.2015.39.
- Maevskii VV, Kharin YuS. Robust regressive forecasting under functional distortions in a model. Automation and Remote Control.2002;63(11):1803–1820. DOI: 10.1023/A:1020959432568.
- Pashkevich MA, Kharin YuS. Robust estimation and forecasting for beta-mixed hierarchical models of grouped binary data. Statistics and Operations Research Transactions. 2004;28(2):125–160.
- Bol’shev LN, Smirnov NV. Tablitsy matematicheskoi statistiki [Mathematical statistics tables]. Moscow: Nauka; 1983. 512 p. Russian.
- Kharin YuS, Zuev NM, Zhuk EE. Teoriya veroyatnostei, matematicheskaya i prikladnaya statistika [Probability theory, mathematical and applied statistics]. Minsk: Belarusian State University; 2011. 465 p. Russian.
- Kharin YuS. Optimal’nost’ i robastnost’ v statisticheskom prognozirovanii [Optimality and robustness in statistical forecasting]. Minsk: Belarusian State University; 2008. 265 p. Russian.
- Kharin Yu. Statistical analysis of discrete-valued time series by parsimonious high-order Markov chains. Austrian Journal of Statistics. 2020;49(4):76–88. DOI: 10.17713/ajs.v49i4.1132.
- Kedem B, Fokianos K. Regression models for time series analysis. Wiley: Hoboken; 2002. 326 p.
- Malugin VI. Metody analiza mnogomernykh ekonometricheskikh modelei s neodnorodnoi strukturoi [Methods for analyzing multivariate econometric models with a heterogeneous structure]. Minsk: Belarusian State University; 2014. 351 p. Russian.
- Colizza V, Barrat A, Barthelemy M, Vespignani A. Predictability and epidemic pathways in global outbreaks of infectious diseases: the SARS case study. BMC Medicine. 2007;5:34. DOI: 10.1186/1741-7015-5-34.
- Engle RF, Granger CWJ. Co-integration and error correction: representation, estimation and testing. Econometrica. 1987;55(2):251–276. DOI: 10.2307/1913236. JSTOR 1913236.
- Kermack WO, McKendrick AG. Contributions to the mathematical theory of epidemics – I. Bulletin of Mathematical Biology. 1991;53(1–2):33–55. DOI: 10.1007/BF02464423.
- Kharin YuS, Malugin VI, Kharin AYu. Ekonometricheskoe modelirovanie [Econometric modeling]. Minsk: Belarusian State University; 2003. 313 p. Russian.
- Johansen S. Likelihood-based inference in cointegrated vector autoregressive models. 2nd edition. Oxford: Oxford University Press; 1995. 267 р.
- Kharin AYu. Robastnost’ baiesovskikh i posledovatel’nykh statisticheskikh reshayushchikh pravil [Robustness of Bayesian and sequential statistical decision rules]. Minsk: Belarusian State University; 2013. 207 p. Russian.
- Kharin A, Tu TT. Performance and robustness analysis of sequential hypotheses testing for time series with trend. Austrian Journal of Statistics. 2017;46(3–4):23–36. DOI: 10.17713/ajs.v46i3-4.668.
- Kharin AYu. An approach to asymptotic robustness analysis of sequential tests for composite parametric hypotheses. Journal of Mathematical Sciences. 2017;227(2):196–203. DOI: 10.1007/s10958-017-3585-z.
Copyright (c) 2020 Journal of the Belarusian State University. Mathematics and Informatics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who are published in this journal agree to the following:
- The authors retain copyright on the work and provide the journal with the right of first publication of the work on condition of license Creative Commons Attribution-NonCommercial. 4.0 International (CC BY-NC 4.0).
- The authors retain the right to enter into certain contractual agreements relating to the non-exclusive distribution of the published version of the work (e.g. post it on the institutional repository, publication in the book), with the reference to its original publication in this journal.
- The authors have the right to post their work on the Internet (e.g. on the institutional store or personal website) prior to and during the review process, conducted by the journal, as this may lead to a productive discussion and a large number of references to this work. (See The Effect of Open Access.)