A method for constructing an optimal control strategy in a linear terminal problem

Abstract

This paper deals with an optimal control problem for a linear discrete system subject to unknown bounded disturbances, where the control goal is to steer the system with guarantees into a given terminal set while minimising the terminal cost function. We define an optimal control strategy which takes into account the state of the system at one future time instant and propose an efficient numerical method for its construction. The results of numerical experiments show an improvement in performance under the optimal control strategy in comparison to the optimal open-loop worst-case control while maintaining comparable computation times.

Author Biographies

Dzmitry A. Kastsiukevich, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

senior lecturer at the department of optimal control methods, faculty of applied mathematics and computer science

Natalia M. Dmitruk, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

PhD (physics and mathematics), docent; head of the department of optimal control methods, faculty of applied mathematics and computer science

References

  1. Witsenhausen H. A minimax control problem for sampled linear systems. IEEE Transactions on Automatic Control. 1968;13(1): 5–21. DOI: 10.1109/TAC.1968.1098788.
  2. Kurzhanskii AB. Upravlenie i nablyudenie v usloviyakh neopredelennosti [Control and observation under uncertainty conditions]. Gusev MI, editor. Moscow: Nauka; 1977. 392 p. Russian.
  3. Krasovskii NN. Upravlenie dinamicheskoi sistemoi. Zadacha o minimume garantirovannogo rezul’tata [Control of a dynamical system. The problem of the minimum of the guaranteed result]. Moscow: Nauka; 1985. 520 p. Russian.
  4. Lee JH, Zhenghong Yu. Worst-case formulations of model predictive control for systems with bounded parameters. Automatica. 1997;33(5):763–781. DOI: 10.1016/S0005-1098(96)00255-5.
  5. Bemporad A, Borrelli F, Morari M. Min-max control of constrained uncertain discrete-time linear systems. IEEE Transactions on Automatic Control. 2003;48(9):1600–1606. DOI: 10.1109/TAC.2003.816984.
  6. Balashevich NV, Gabasov R, Kirillova FM. [The construction of optimal feedback from mathematical models with uncertainty]. Zhurnal vychislitel’noi matematiki i matematicheskoi fiziki. 2004;44(2):265–286. Russian.
  7. Kostyukova O, Kostina E. Robust optimal feedback for terminal linear-quadratic control problems under disturbances. Mathematical programming. 2006;107(1–2):131–153. DOI: 10.1007/s10107-005-0682-4.
  8. Dmitruk NM. [Optimal strategy with one closing instant for a linear optimal guaranteed control problem]. Zhurnal vychislitel’noi matematiki i matematicheskoi fiziki. 2018;58(5):664–681. DOI: 10.7868/S0044466918050010. Russian.
  9. Boyd S, Vandenberghe L. Convex optimization. New York: Cambridge University Press; 2004. 716 p.
  10. Gal T. Postoptimal analyses, parametric programming and related topics: degeneracy, multicriteria decision making redundancy. Berlin: De Gruyter; 1995. 437 p.
Published
2021-08-05
Keywords: linear system, disturbance, optimal control, control strategy, algorithm
How to Cite
Kastsiukevich, D. A., & Dmitruk, N. M. (2021). A method for constructing an optimal control strategy in a linear terminal problem. Journal of the Belarusian State University. Mathematics and Informatics, 2, 38-50. https://doi.org/10.33581/2520-6508-2021-2-38-50