The birational composition of arbitrary quadratic form with binary quadratic form

Abstract

Let f(X) and g(Y) be nondegenerate quadratic forms of dimensions m and n respectively over a field K, charK ≠ 2. Herein, the problem of the birational composition of f(X) and g(Y) is considered, namely, the condition is established when the product f(X)g(Y) is birationally equivalent over K to a quadratic form h(Z) over K of dimension m + n? The main result of this paper is the complete solution of the problem of the birational composition for quadratic forms f(X) and g(Y) over a field K when m = 2. The sufficient and necessary conditions for the existence of birational composition h(Z) for quadratic forms f(X) and g(Y) over a field K for m = 2 are obtained. The set of quadratic forms is described which can be considered as h(Z) in this case.

Author Biography

Alexandr A. Bondarenko, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

PhD (physics and mathematics), docent; associate professor at the department of higher algebra and information security, faculty of mechanics and mathematics

References

  1. Hurwitz A. Über die Komposition der quadratischen Formen. Mathematische Annalen. 1922;88(1–2):1–25. DOI: 10.1007/BF01448439.
  2. Radon J. Lineare Scharen orthogonaler Matrizen. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg. 1922;1(1):1–14. DOI: 10.1007/BF02940576.
  3. Lam KY. Topological methods for studying the composition of quadratic forms. In: Riehm CR, Hambleton I, editors. Quadratic and Hermitian forms [Conference on quadratic forms and Hermitian K-theory, held at McMaster University; 1983 July 11–22; Hamilton, Ontario, Canada]. Providence: American Mathematical Society; 1984. p. 173–192 (CMS conference proceedings; volume 4).
  4. Pfister A. Multiplikative quadratische Formen. Archiv der Mathematic. 1965;16(1):363–370. DOI: 10.1007/BF01220043.
  5. Bondarenko AA. [On the birational composition of quadratic forms]. Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series. 2007;4:56–61. Russian.
  6. Bondarenko AA. [Birational composition of quadratic forms over a local field]. Matematicheskie zametki. 2009;85(5):661–670. DOI: 10.4213/mzm4673. Russian.
  7. Bondarenko AA. [The birational composition of quadratic forms over a finite field]. Vestnik BGU. Seriya 1. Fizika. Matematika. Informatika. 2010;3:90–93. Russian.
  8. Bondarenko AA. [The birational composition of quadratic forms over a function field]. Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series. 2014;3:28–32. Russian.
  9. Bondarenko AA. [The birational composition of ternary quadratic forms]. Vestnik BGU. Seriya 1. Fizika. Matematika. Informatika. 2012;2:106–110. Russian.
  10. Serre J-P. Cours d’arithmétique. Paris: Presses Universitaires de France; 1970. 188 p. Russian edition: Serre J-P. Kurs arifmetiki. Skopin AI, translator; Malyshev AV, editor. Moscow: Mir; 1972. 184 p.
  11. Knebusch M, Scharlau W. Algebraic theory of quadratic forms. Generic methods and Pfister forms. Boston: Birkhäuser; 1980. 44 p. (DMV seminar; 1).
Published
2022-04-01
Keywords: quadratic form, birational equivalence, birational composition
How to Cite
Bondarenko, A. A. (2022). The birational composition of arbitrary quadratic form with binary quadratic form. Journal of the Belarusian State University. Mathematics and Informatics, 1, 14-20. https://doi.org/10.33581/2520-6508-2022-1-14-20
Section
Mathematical Logic, Algebra and Number Theory