Random walks on Cayley graphs of complex reflection groups

Abstract

Asymptotic properties of random walks on minimal Cayley graphs of complex reflection groups are investigated. The main result of the paper is theorem on fast mixing for random walks on Cayley graphs of complex reflection groups. Particularly, bounds of diameters and isoperimetric constants, a known result on fast fixing property for expander graphs play a crucial role to obtain the main result. A constructive way to prove a special case of Babai’s conjecture on logarithmic order of diameters for complex reflection groups is proposed. Basing on estimates of diameters and Cheeger inequality, there is obtained a non-trivial lower bound for spectral gaps of minimal Cayley graphs on complex reflection groups.

Author Biography

Maksim M. Vaskouski, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

doctor of science (physics and mathematics), docent; head of the department of higher mathematics, faculty of applied mathematics and computer science

References

  1. Jao D, Miller SD, Venkatesan R. Expander graphs based on GRH with an application to elliptic curve cryptography. Journal of Number Theory. 2009;129(6):1491–1504. DOI: 10.1016/j.jnt.2008.11.006.
  2. Charles DX, Lauter KE, Goren EZ. Cryptographic hash functions from expander graphs. Journal of Cryptology. 2009;22(1):93–113. DOI: 10.1007/s00145-007-9002-x.
  3. Spielman DA. Linear-time encodable and decodable error-correcting codes. IEEE Transactions on Information Theory. 1996;42(6):1723–1731. DOI: 10.1109/18.556668.
  4. Sauerwald T. Randomized protocols for information dissemination. Padeborn: University of Padeborn; 2008. 146 p.
  5. Shephard GC, Todd JA. Finite unitary reflection groups. Canadian Journal of Mathematics. 1954;6:274–304. DOI: 10.4153/CJM-1954-028-3.
  6. Boalch P. Painleve equations and complex reflections. Annales de l’Institut Fourier. 2003;53(4):1009–1022. DOI: 10.5802/aif.1972.
  7. Aldous DJ. Random walks on finite groups and rapidly mixing Markov chains. In: Azéma J, Yor M, editors. Séminaire de probabilités de Strasbourg. Volume 17. Berlin: Springer; 1983. p. 243–297 (Lecture notes in mathematics; 986).
  8. Vaskouski M, Zadorozhnyuk A. Resistance distances in Cayley graphs on symmetric groups. Discrete Applied Mathematics. 2017;227:121–135. DOI: 10.1016/j.dam.2017.04.044.
  9. Jian-yi Shi. Formula for the reflection length of elements in the group G m( ) , , p n . Journal of Algebra. 2007;316(1):284–296. DOI: 10.1016/j.jalgebra.2007.06.031.
  10. Krebs M, Shaheen A. Expander families and Cayley graphs: a beginner’s guide. New York: Oxford University Press; 2011. 258 p.
  11. Babai L. Local expansion of vertex-transitive graphs and random generation in finite groups. In: Proceedings of the 23rd annual ACM symposium on theory of computing; 1991 May 5–8; New Orleans, Louisiana, USA. New York: ACM Press; 1991. p. 164–174. DOI: 10.1145/103418.103440.
Published
2021-11-19
Keywords: complex reflection groups, Cayley graphs, random walks, expander graphs
How to Cite
Vaskouski, M. M. (2021). Random walks on Cayley graphs of complex reflection groups. Journal of the Belarusian State University. Mathematics and Informatics, 3, 51-56. https://doi.org/10.33581/2520-6508-2021-3-51-56
Section
Discrete Mathematics and Mathematical Cybernetics