The non-axisymmetric loading of an elastoplastic three-layer plate in its plane

  • Eduard I. Starovoitov Belarusian State University of Transport, 34 Kirava Street, Homieĺ 246653, Belarus
  • Alina V. Nesterovich Belarusian State University of Transport, 34 Kirava Street, Homieĺ 246653, Belarus

Abstract

The statement of the boundary value problem on the deformation of a circular three-layer plate in its plane under the action of a non-axisymmetric load is herein presented. The materials of thin carrier layers obey the hypotheses of the theory of small elastoplastic deformations. The relatively thick filler is physically non-linearly elastic. A system of non-linear differential equilibrium equations in partial derivatives is obtained. A general technique for solving the problem in displacements based on the Fourier method and Ilyushin’s method of elastic solutions is proposed. The case of an external cosine load is considered. An iterative solution of a boundary value problem for a physically non-linear plate is obtained. The corresponding solution of the elastic problem is written out in the final form. The obtained solution is numerically tested.

Author Biographies

Eduard I. Starovoitov, Belarusian State University of Transport, 34 Kirava Street, Homieĺ 246653, Belarus

doctor of science (physics and mathematics), full professor; head of the department of structural mechanics, faculty of industrial and civil engineering

Alina V. Nesterovich, Belarusian State University of Transport, 34 Kirava Street, Homieĺ 246653, Belarus

PhD (physics and mathematics); associate professor at the department of structural mechanics, faculty of industrial and civil engineering

References

  1. Starovoitov EI, Nagiyev FB. Foundations of the theory of elasticity, plasticity and viscoelasticity. Toronto: Apple Academic Press; 2012. XVII, 346 p.
  2. Aghalovyan L. Asymptotic theory of anisotropic plates and shells. Prikazchikov D, translator. Singapore: World Scientific Publishing; 2015. XV, 360 p.
  3. Carrera E, Fazzolari FA, Cinefra M. Thermal stress analysis of composite beams, plates and shells. Computational modelling and applications. Amsterdam: Academic Press; 2016. XXXI, 408 р.
  4. Gorshkov AG, Starovoitov EI, Yarovaya AV. Harmonic vibrations of a viscoelastoplastic sandwich cylindrical shell. International Applied Mechanics. 2001;37(9):1196–1203. DOI: 10.1023/A:1013290600951.
  5. Starovoitov EI, Leonenko DV, Yarovaya AV. Vibrations of round three-layer plates under the action of various types of surface loads. Strength of Materials. 2003;35(4):346–352. DOI: 10.1023/A:1025834123302.
  6. Starovoitov EI, Leonenko DV, Yarovaya AV. Circular sandwich plates under local impulsive loads. International Applied Mechanics. 2003;39(8):945–952. DOI: 10.1023/A:1027464715958.
  7. Starovoitov EI, Leonenko DV, Yarovaya AV. Vibrations of circular sandwich plates under resonance loads. International Applied Mechanics. 2003;39(12):1458–1463. DOI: 10.1023/B:INAM.0000020831.16802.4a.
  8. Starovoitov EI, Leonenko DV, Tarlakovsky DV. Resonance vibrations of a circular composite plates on an elastic foundation. Mechanics of Composite Materials. 2015;51(5):561–570. DOI: 10.1007/s11029-015-9527-2.
  9. Mikhasev GI, Eremeyev VA, Wilde K, Maevskaya SS. Assessment of dynamic characteristics of thin cylindrical sandwich panels with magnetorheological core. Journal of Intelligent Material Systems and Structures. 2019;30(18–19):2748–2769. DOI: 10.1177/1045389X19873423.
  10. Mikhasev GI, Altenbach H. Free vibrations of elastic laminated beams, plates and cylindrical shells. In: Thin-walled laminated structures. Cham: Springer; 2019. p. 157–198 (Advanced structured materials; volume 106). DOI: 10.1007/978-3-030-12761-9_4.
  11. Bakulin VN, Volkov EN, Simonov AI. Dynamic stability of a cylindrical shell under alternating axial external pressure. Russian Aeronautics. 2017;60(4):508–513. DOI: 10.3103/S1068799817040055.
  12. Bakulin VN, Boitsova DA, Nedbai AYa. Parametric resonance of a three-layered cylindrical composite rib-stiffened shell. Mechanics of Composite Materials. 2021;57(5):623–634. DOI: 10.1007/s11029-021-09984-9.
  13. Kondratov DV, Mogilevich LI, Popov VS, Popova AA. Hydroelastic oscillations of a circular plate, resting on Winkler foundation. Journal of Physics: Conference Series. 2018;944:012057. DOI: 10.1088/1742-6596/944/1/012057.
  14. Mogilevich LI, Popov VS, Popova AA, Christoforova AV. Mathematical modeling of hydroelastic oscillations of the stamp and the plate, resting on Pasternak foundation. Journal of Physics: Conference Series. 2018;944:012081. DOI: 10.1088/1742-6596/944/1/012081.
  15. Tarlakovskii DV, Fedotenkov GV. Two-dimensional nonstationary contact of elastic cylindrical or spherical shells. Journal of Machinery Manufacture and Reliability. 2014;43(2):145–152. DOI: 10.3103/S1052618814010178.
  16. Suvorov YeM, Tarlakovskii DV, Fedotenkov GV. The plane problem of the impact of a rigid body on a half-space modelled by a Cosserat medium. Journal of Applied Mathematics and Mechanics. 2012;76(5):511–518. DOI: 10.1016/j.jappmathmech.2012.11.015.
  17. Paimushin VN, Gazizullin RK. Static and monoharmonic acoustic impact on a laminated plate. Mechanics of Composite Materials. 2017;53(3):283–304. DOI: 10.1007/s11029-017-9662-z.
  18. Paimushin VN, Firsov VA, Shishkin VM. Modeling the dynamic response of a carbon-fiber-reinforced plate at resonance vibrations considering the internal friction in the material and the external aerodynamic damping. Mechanics of Composite Materials. 2017;53(4):425–440. DOI: 10.1007/s11029-017-9673-9.
  19. Paimushin VN. Theory of moderately large deflections of sandwich shells having a transversely soft core and reinforced along their contour. Mechanics of Composite Materials. 2017;53(1):1–16. DOI: 10.1007/s11029-017-9636-1.
  20. Ivañez I, Moure MM, Garcia-Castillo SK, Sanchez-Saez S. The oblique impact response of composite sandwich plates. Composite Structures. 2015;133:1127–1136. DOI: 10.1016/j.compstruct.2015.08.035.
  21. Grover N, Singh BN, Maiti DK. An inverse trigonometric shear deformation theory for supersonic flutter characteristics of multilayered composite plates. Aerospace Science and Technology. 2016;52:41–51. DOI: 10.1016/j.ast.2016.02.017.
  22. Starovoitov EI, Leonenko DV. Deformation of a three-layer elastoplastic beam on an elastic foundation. Mechanics of Solids. 2011;46(2):291–298. DOI: 10.3103/S002565441102018X.
  23. Starovoitov EI, Leonenko DV, Yarovaya AV. Elastoplastic bending of a sandwich bar on an elastic foundation. International Applied Mechanics. 2007;43(4):451–459. DOI: 10.1007/s10778-007-0042-6.
  24. Xie Z. An approximate solution to the plastic indentation of circular sandwich panels. Mechanics of Composite Materials. 2018;54(2):243–250. DOI: 10.1007/s11029-018-9735-7.
  25. Kudin A, Al-Omari MAV, Al-Athamneh BGM, Al-Athamneh HKM. Bending and buckling of circular sandwich plates with the nonlinear elastic core material. International Journal of Mechanical Engineering and Information Technology. 2015;3(8):1487–1493.
  26. Škec L, Jelenić G. Analysis of a geometrically exact multi-layer beam with a rigid interlayer connection. Acta Mechanica. 2014;225(2):523–541. DOI: 10.1007/s00707-013-0972-5.
  27. Pradhan M, Dash PR, Pradhan PK. Static and dynamic stability analysis of an asymmetric sandwich beam resting on a variable Pasternak foundation subjected to thermal gradient. Meccanica. 2016;51(3):725–739. DOI: 10.1007/s11012-015-0229-6.
  28. Zhihua Wang, Guoxing Lu, Feng Zhu, Longmao Zhao. Load-carrying capacity of circular sandwich plates at large deflection. Journal of Engineering Mechanics. 2017;143(9):04017057. DOI: 10.1061/(ASCE)EM.1943-7889.0001243.
  29. Zadeh HV, Tahani M. Analytical bending analysis of a circular sandwich plate under distributed load. International Journal of Recent Advances in Mechanical Engineering. 2017;6(1):1–10. DOI: 10.14810/ijmech.2017.6101.
  30. Yang L, Harrysson O, West H, Cormier D. A comparison of bending properties for cellular core sandwich panels. Materials Sciences and Applications. 2013;4(8):471–477. DOI: 10.4236/msa.2013.48057.
  31. Nestsiarovich AV. Deformation of a three-layer circular plate under cosine loading in its plane. Problems of Physics, Mathematics and Technics. 2020;1:85–90. Russian.
  32. Nestsiarovich AV. Axisymmetric loading of a circular physically nonlinear three-layer plate in its plane. Problems of Physics, Mathematics and Technics. 2021;3:24–29. Russian. DOI: 10.54341/20778708_2021_3_48_24.
  33. Starovoitov EI. Description of the thermomechanical properties of some structural materials. Strength of Materials. 1988;20(4):426–431. DOI: 10.1007/BF01530849.
Published
2022-08-01
Keywords: circular three-layer plate, non-axisymmetric load, movement, plastic
Supporting Agencies This work was supported by the Belarusian Republican Foundation for Fundamental Research (project T20R-047).
How to Cite
Starovoitov, E. I., & Nesterovich, A. V. (2022). The non-axisymmetric loading of an elastoplastic three-layer plate in its plane. Journal of the Belarusian State University. Mathematics and Informatics, 2, 57-69. https://doi.org/10.33581/2520-6508-2022-2-57-69