On an open problem in the theory of modular subgroups

  • Liu Aming-Ming Hainan University, 58 Renmin Avenue, Haikou 570228, Hainan Province, China
  • Guo Wenbin Hainan University, 58 Renmin Avenue, Haikou 570228, Hainan Province, China
  • Inna N. Safonova Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus
  • Alexander N. Skiba Francisk Skorina Gomel State University, 104 Savieckaja Street, Gomiel 246028, Belarus

Abstract

Let $G$ be a finite group. Then a subgroup $A$ of group $G$ is said to be modular in $G$ if (i) $\langle X, A \cap Z \rangle=\langle X, A \rangle \cap Z$ for all $X \leq G, Z \leq G$ such that $X \leq Z,$ and (ii) $\langle A, Y \cap Z \rangle=\langle A, Y \rangle \cap Z$ for all $Y \leq G, Z \leq G$ such that $A \leq Z.$ We obtain a description of finite groups in which modularity is a transitive relation, that is, if A is a modular subgroup of K and K is a modular subgroup of G, then A is a modular subgroup of G. The result obtained is a solution to one of the old problems in the theory of modular subgroups, which goes back to the works of A. Frigerio (1974), I. Zimmermann (1989).

Author Biographies

Liu Aming-Ming, Hainan University, 58 Renmin Avenue, Haikou 570228, Hainan Province, China

associate professor at the School of Science

Guo Wenbin, Hainan University, 58 Renmin Avenue, Haikou 570228, Hainan Province, China

professor at the School of Science

Inna N. Safonova, Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

PhD (physics and mathematics), docent; deputy dean of the faculty of applied mathematics and computer science for research

Alexander N. Skiba, Francisk Skorina Gomel State University, 104 Savieckaja Street, Gomiel 246028, Belarus

doctor of science (physics and mathematics), full professor; professor at the department of algebra and geometry, faculty of mathematics and programming technologies

References

  1. Schmidt R. Subgroup lattices of groups. Berlin: Walter de Gruyter; 1994. 572 p. (de Gruyter expositions of mathematics; volume 14). DOI: 10.1515/9783110868647.
  2. Ballester-Bolinches A, Esteban-Romero R, Asaad M. Products of finite groups. Berlin: Walter de Gruyter; 2010. 334 p. (de Gruyter expositions in mathematics; volume 53). DOI: 10.1515/9783110220612.
  3. Ballester-Bolinches A, Beidleman JC, Heineken H. Groups in which Sylow subgroups and subnormal subgroups permute. Illinois Journal of Mathematics. 2003;47(1–2):63–69. DOI: 10.1215/ijm/1258488138.
  4. Ore O. Contributions to the theory of groups of finite order. Duke Mathematical Journal. 1939;5(2):431–460. DOI: 10.1215/S0012-7094-39-00537-5.
  5. Itô N, Szép J. Über die Quasinormalteiler von endlichen Gruppen. Acta Scientiarum Mathematicarum. 1962;23(1–2):168–170.
  6. Maier R, Schmid P. The embedding of quasinormal subgroups in finite groups. Mathematische Zeitschrift. 1973;131(3):269–272. DOI: 10.1007/BF01187244.
  7. Thompson JG. An example of core-free quasinormal subgroups of p-groups. Mathematische Zeitschrift. 1967;96(3):226–227. DOI: 10.1007/BF01124081.
  8. Gaschütz W. Gruppen, in denen das Normalteilersein transitiv ist. Journal für die reine und angewandte Mathematik. 1957;198:87–92. DOI: 10.1515/crll.1957.198.87.
  9. Robinson DJS. The structure of finite groups in which permutability is a transitive relation. Journal of the Australian Mathematical Society. 2001;70(2):143–160. DOI: 10.1017/S1446788700002573.
  10. Frigerio A. Gruppi finiti nei quali è transitivo l’essere sottogruppo modulare. In: Istituto Veneto di Scienze, Lettere ed Arti. Atti. Classe di scienze matematiche e naturali. Tomo 132, Anno academico 1973/74. Venezia: Istituto Veneto di Scienze, Lettere ed Arti;1974. p. 185–190.
  11. Zimmermann I. Submodular subgroups of finite groups. Mathematische Zeitschrift. 1989;202(4):545–557. DOI: 10.1007/BF01221589.
  12. Huppert B. Endliche Gruppen I. Berlin: Springer-Verlag; 1967. 796 p. (Grundlehren der mathematischen Wissenschaften; volume 134). DOI: 10.1007/978-3-642-64981-3.
  13. Skiba AN. On some classes of sublattices of the subgroup lattice. Journal of the Belarusian State University. Mathematics and Informatics. 2019;3:35–47. DOI: 10.33581/2520-6508-2019-3-35-47.
Published
2023-07-24
Keywords: finite group, modular subgroup, submodular subgroup, M-group, Robinson complex
Supporting Agencies This work was supported by the National Natural Science Foundation of China (grant No. 12171126) and the Natural Science Foundation of Hainan Province of China (grant No. 621RC510). The research of the third author was supported by the Ministry of Education of the Republic of Belarus (state registration No. 20211328).
How to Cite
Aming-Ming, L., Wenbin, G., Safonova, I. N., & Skiba, A. N. (2023). On an open problem in the theory of modular subgroups. Journal of the Belarusian State University. Mathematics and Informatics, 2, 28-34. https://doi.org/10.33581/2520-6508-2023-2-28-34
Section
Mathematical Logic, Algebra and Number Theory