On meromorphic solutions of the equations related to the non-stationary hierarchy of the second Painlevé equation
Abstract
The non-stationary hierarchy of the second Painlevé equation is herein considered. It is a sequence of polynomial ordinary differential equations of even order with a single differential-algebraic structure determined by the operator LN. The first member of this hierarchy for N = 1 is the second Painlevé equation, and the subsequent equations of 2N order contain arbitrary parameters. They are also named generalised higher analogues of the second Painlevé equation of 2N order. The hierarchies of the first Painlevé equation and the equation P34 from the classification list of canonical Painlevé equations are also associated with this hierarchy. In this paper, we also consider a second order linear equation the coefficients of which are determined by solutions of the hierarchy of the second Painlevé equation and the equation P34. Using the Frobenius method, we obtain sufficient conditions for the meromorphicity of the general solution of second-order linear equations with the coefficients defined by the solutions of the first three equations of the non-stationary hierarchy of the second Painlevé equation and the equation P34. We also find sufficient conditions for the rationality of the general solution of second-order linear equations with coefficients determined by rational solutions of the equations of the non-stationary hierarchy of the second Painlevé equation and the equation P34.
References
- Ince EL. Obyknovennye differentsial’nye uravneniya [Ordinary differential equations]. Efros AM, editor. Kharkiv: Nauchno-tekhnicheskoe izdatel’stvo Ukrainy; 1939. 719 p. Russian.
- Gromak VI, Laine I, Shimomura S. Painlevé differential equations in the complex plane. Berlin: De Gruyter; 2002. 303 p. (De Gruyter studies in mathematics; volume 28). DOI: 10.1515/9783110198096.
- Kudryashov NA. Metody nelineinoi matematicheskoi fiziki [Methods of nonlinear mathematical physics]. Dolgoprudny: Intellekt; 2010. 364 p. Russian.
- Its AR, Kapaev AA, Novokshenov VYu, Fokas AS. Transtsendenty Penleve. Metod zadachi Rimana [Painlevé transcendents. Method of the Riemann problem]. Moscow: Institut komp’yuternykh issledovanii; 2005. 728 p. Co-published by the «Regulyarnaya i khaoticheskaya dinamika». Russian.
- Conte R, Musette M. The Painlevé handbook. Dordrecht: Springer; 2008. XXIII, 256 p.
- Gromak VI. Bäcklund transformatios of the higher order Painlevé equations. In: Coley A, Levi D, Milson R, Rogers C, Winternitz P, editors. Bäcklund and Darboux transformations. The geometry of solitons. AARMS – CRM workshop; 1999 June 4–9; Halifax, Canada. Providence: American Mathematical Society; 2001. p. 3–28 (CRM proceedings and lecture notes; volume 29).
- Clarkson PA, Joshi N, Pickering A. Bäcklund transformations for the second Painlevé hierarchy: a modified truncation approach. Inverse Problems. 1999;15(1):175–187. DOI: 10.1088/0266-5611/15/1/019.
- Clarkson PA, Mansfield EL. The second Painlevé equation, its hierarchy and associated special polynomials. Nonlinearity. 2003;16(3):R1 – R26. DOI: 10.1088/0951-7715/16/3/201.
- Sakka AH. Linear problems and hierarchies of Painlevé equations. Journal of Physics A: Mathematical and Theoretical. 2009; 42(2):025210. DOI: 10.1088/1751-8113/42/2/025210.
- Goursat É. Cours d’analyse mathématique. Tome 3, Intégrales infiniment voisines. Équations aux dérivées partielles du second ordre. Équations intégrales. Calcul des variations. 5e édition. Paris: Gauthier-Villars; 1933. 702 p. Russian edition: Goursat É. Kurs matematicheskogo analiza. Tom 3. Chast’ 2, Integral’nye uravneniya. Variatsionnoe ischislenie. Shestopal MG, translator; Stepanov VV, editor. Moscow: Gosudarstvennoe tekhniko-teoreticheskoe izdatel’stvo; 1934. 318 p.
- Gromak VI. [Analytic properties of solutions to equations in the generalized hierarchy of the second Painlevé equation]. Differentsial’nye uravneniya. 2020;56(8):1017–1033. Russian. DOI: 10.1134/S0374064120080038.
- Kudryashov NA. Amalgamations of the Painlevé equations. Journal of Mathematical Physics. 2003;44(12):6160–6178. DOI: 10.1063/1.1623332.
- Bobrova I. On symmetries of the non-stationary PnII¬ hierarchy and their applications. arXiv:2010.10617v2 [Preprint]. 2020 [cited 2020 November 23]: [25 p.]. Available from: https://arxiv.org/abs/2010.10617v2.
- Airault H. Rational solutions of Painlevé equations. Studies in Applied Mathematics. 1979;61(1):31–53. DOI: 10.1002/sapm 197961131.
- Okamoto K. Studies on the Painlevé equations. III. Second and fourth Painlevé equations, PII and PIV. Mathematische Annalen. 1986;275(2):221–255. DOI: 10.1007/BF01458459.
- Gromak VI, Zenchenko AS. On the theory of higher-order Painlevé equations. Differential Equations. 2004;40(5):625–633. DOI: 10.1023/B:DIEQ.0000043520.27878.5c.
- Gromak VI, Golubeva LL. [Generalized second Painlevé equation of the fourth order]. Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series. 2005;4:5–10. Russian.
- Golubeva LL, Zenchenko AS. [Some properties of solutions of the equation ().42P Trudy Instituta matematiki. 2004;12(2): 54–56. Russian.
- Gromak VI. [Solutions of the fourth-order equation in the generalized hierarchy of the second Painlevé equation]. Differentsial’nye uravneniya. 2019;55(3):337–347. Russian. DOI: 10.1134/S0374064119030075.
- Gromak VI. [On the properties of solutions of the equations in the generalized hierarchy of the equation P34]. Differentsial’nye uravneniya. 2022;58(2):153–163. Russian.
- Hinkkanen A, Laine I. Solutions of the first and second Painlevé equations are meromorphic. Journal d’Analyse Mathématique. 1999;79:345–377. DOI: 10.1007/BF02788247.
- Domrin AV, Suleimanov BI, Shumkin MA. [Global meromorphy of solutions of the Painlevé equations and their hierarchies]. Trudy Matematicheskogo instituta imeni V. A. Steklova. 2020;311:106–122. Russian. DOI: 10.4213/tm4116.
- Domrin AV, Shumkin MA, Suleimanov BI. Meromorphy of solutions for a wide class of ordinary differential equations of Painlevé type. Journal of Mathematical Physics. 2022;63(2):023501. DOI: 10.1063/5.0075416.
- Gromak EV. On meromorphic solutions of the linear equations of the second order related to the second Painlevé equation. Vesnik of Yanka Kupala State University of Grodno. Series 2, Mathematics. Physics. Informatics, Сomputer Technology and its Сontrol. 2022;12(3):42–49. Russian.
- Gromak EV, Gromak VI. [On global meromorphy of solutions of the linear equations related to the second Painlevé equation and its hierarchy]. In: Amel’kin VV, Antonevich AB, Astrovskii AI, Vas’kovskii MM, Gladkov AL, Gromak VI, et al., editors. Eruginskie chteniya – 2023. Materialy XXI Mezhdunarodnoi nauchnoi konferentsii po differentsial’nym uravneniyam; 23–27 maya 2023 g.; Mogilev, Belarus’. Chast’ 1 [Erugin readings – 2023. Proceedings of the 21st International scientific conference on differential equations; 2023 May 23–27; Mogilev, Belarus. Part 1]. Mogilev: Belarusian-Russian University; 2023. p. 9–11. Russian.
- Gromak EV. On meromorphic solutions of the equations related to the first Painlevé equation. Journal of the Belarusian State University. Mathematics and Informatics. 2022;2:15–22. Russian. DOI: 10.33581/2520-6508-2022-2-15-22.
Copyright (c) 2023 Journal of the Belarusian State University. Mathematics and Informatics

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who are published in this journal agree to the following:
- The authors retain copyright on the work and provide the journal with the right of first publication of the work on condition of license Creative Commons Attribution-NonCommercial. 4.0 International (CC BY-NC 4.0).
- The authors retain the right to enter into certain contractual agreements relating to the non-exclusive distribution of the published version of the work (e.g. post it on the institutional repository, publication in the book), with the reference to its original publication in this journal.
- The authors have the right to post their work on the Internet (e.g. on the institutional store or personal website) prior to and during the review process, conducted by the journal, as this may lead to a productive discussion and a large number of references to this work. (See The Effect of Open Access.)