Statistical hypotheses testing for parameters of binomial conditionally autoregressive model of spatio-temporal data

  • Marina K. Zhurak Research Institute for Applied Problems of Mathematics and Informatics, Belarusian State University, Nezavisimosti avenue, 4, 220030, Minsk
  • Yuriy S. Kharin Research Institute for Applied Problems of Mathematics and Informatics, Belarusian State University, Nezavisimosti avenue, 4, 220030, Minsk

Abstract

This paper is devoted to new binomial conditional autoregressive model of spatio-temporal data. This model is multidimensional non-homogeneous Markov chain with a finite state space. We use the maximum likelihood method for statistical estimation of the model parameters. We show that these estimators are consistent and asymptotically normally distributed. Fisher information matrix is calculated; it takes block-diagonal form and is nonsingular. The results of the analysis of the asymptotic properties of the maximum likelihood estimators are used to construct a statistic for statistical testing of hypotheses about the values of the parameters of the binomial conditional autoregressive model. Decision rule for statistical hypotheses testing is built and an asymptotic expression of the power of the test is obtained for a family of contiguous alternatives. Experiments have been conducted on simulated data to evaluate performance of the constructed decision rule. Plots of experimental and theoretical estimates of the first type error probability and power of the test in dependence on the length of the observation period are presented, they illustrate adequacy of theoretical and experimental results.

Author Biographies

Marina K. Zhurak, Research Institute for Applied Problems of Mathematics and Informatics, Belarusian State University, Nezavisimosti avenue, 4, 220030, Minsk

junior scientific researcher

Yuriy S. Kharin, Research Institute for Applied Problems of Mathematics and Informatics, Belarusian State University, Nezavisimosti avenue, 4, 220030, Minsk

corresponding member of the National Academy of Sciences of Belarus, doctor of science (physics and mathematics), full professor; director

References

  1. Kang S., McGree1 J., Baade P., et al. Case Study for Modelling Cancer Incidence Using Bayesian Spatio-Temporal Models. Aust. & N. Z. J. Stat. 2015. Vol. 57, issue 3. P. 325–345.
  2. Xu G., Liang F., Genton M. G. A Bayesian spatio-temporal geostatistical model with an auxiliary lattice for large datasets. Stat. Sinica. 2015. Vol. 25. P. 61–79.
  3. Zhu X., Genton M. G., Gu Y., et al. Space-time wind speed forecasting for improved power system dispatch (with discussion and rejoinder). TEST. 2014. Vol. 23. P. 1–25.
  4. Zhu F., Liu S., Shi L. Local influence analysis for Poisson autoregression with an application to stock transaction data. Stat. Neerlandica. 2016. Vol. 7/1. P. 4 –25.
  5. Kharin Y. S., Zhurak M. K. Binomialʼnaya uslovno avtoregressionnaya modelʼ prostranstvenno-vremennykh dannykh i ee veroyatnostno-statisticheskii analiz [The binomial conditional autoregressive model of the spatio-temporal data and its probabilistic and statistical analysis]. Dokl. Nats. akad. nauk Belarusi. 2015. Vol. 59, No. 6. P. 5–12 (in Russ.).
  6. Kharin Y. S., Zhurak M. K. Asimptoticheskii analiz otsenok maksimalʼnogo pravdopodobiya parametrov binomialʼnoi uslovno avtoregressionnoi modeli prostranstvenno-vremennykh dannykh [Asymptotic analysis of maximum likelihood estimators for parameters of binomial conditionally autoregressive model of spatio-temporal data]. Izv. Nats. akad. nauk Belarusi. Ser. fiz.-mat. nauk. 2016. No. 1. P. 36 – 45 (in Russ.).
  7. Kharin Y. S., Zuev N. M., Zhuk E. E. Teoriya veroyatnostei, matematicheskaya i prikladnaya statistika [Probability theory, mathematical and applied statistics]. Minsk, 2011 (in Russ.).
Published
2017-12-02
Keywords: spatio-temporal data, vector Markov chain, maximum likelihood estimator, statistical hypotheses testing
How to Cite
Zhurak, M. K., & Kharin, Y. S. (2017). Statistical hypotheses testing for parameters of binomial conditionally autoregressive model of spatio-temporal data. Journal of the Belarusian State University. Mathematics and Informatics, 1, 16-22. Retrieved from https://journals.bsu.by/index.php/mathematics/article/view/732
Section
Probability Theory and Mathematical Statistics