The radical of the focal values ideal of the complex Kukles system

  • Anton P. Sadovskii Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus
  • Tatsiana V. Makavetskaya Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus
  • Dmitry N. Cherginets Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

Abstract

In the article it is considered the center-focus problem for complex Kukles system x = y, y = -x + Ax2 + 3Bxy + Cy2 + Kx3 + 3Lx2y + Mxy2 + Ny3. The problem is solved by the new method, obtained by A. P. Sadovski and based on the method of normal forms. Instead of investigating the variety of ideal of focal values it is proposed to study the variety of ideal with the basis – polynomials obtained by a new method. The study of the radical of such ideal is divided into two parts: the trivial case where BN = 0, and the case of BN ≠ 0. If BN = 0 it is obtained five series of center conditions for the complex system, in particular, four series of center conditions for the real system. In the case of BN ≠ 0 it can be assumed B = N in the Kuklesʼ system. This assumption simplifies the further study of this case (it is obtained three series of the existence of the complex center, in particular, two series of the existence of the real center). Thus, as a result of research in the present paper it is presented the necessary and sufficient conditions for the complex and real centers existence for the complex and real Kuklesʼ systems respectively. 

Author Biographies

Anton P. Sadovskii, Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

doctor of science (physics and mathematics), full professor; professor at the department of differential equations and systems analysis, faculty of mechanics and mathematics

Tatsiana V. Makavetskaya, Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

PhD (physics and mathematics); associate professor at the department of analytical economics and econometrics, faculty of economics

Dmitry N. Cherginets, Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

PhD (physics and mathematics), docent; associate professor at the department of differential equations and systems analysis, faculty of mechanics and mathematics

References

  1. Lloyd N. G., Pearson J. M. Computing centre conditions for certain cubuc systems. J. Comput. appl. Math. 1992. Vol. 40, issue 3. P. 323 – 336. DOI: 10.1016/0377-0427(92)90188-4.
  2. Sadovskii A. P. [Solution of the center-focus problem for a cubic system of nonlinear oscillations]. Differenatsial’nye uravn. [Differ. Equ.]. 1997. Vol. 33, No. 2. P. 236 –244 (in Russ.).
  3. Sadovskii A. P. [Cubic systems of nonlinear oscillations with seven limit cycles]. Differenatsial’nye uravn. [Differ. Equ.]. 2003. Vol. 39, No. 4. P. 472– 481 (in Russ.).
  4. Lloyd N. G., Pearson J. M. Bifurcations of limit cycles and integrability of planar dynamical systems in complex form. J. Phys. A: Math. Gen. 1999. Vol. 32, No. 10. P. 1973–1984. DOI: 10.1088/0305-4470/32/10/014.
  5. Pearson J. M., Lloyd N. G. Kukles revisited: Advances in computing techniques. Comput. Math. with appl. 2010. Vol. 60, issue 10. P. 2797–2805. DOI: 10.1016/j.camwa.2010.09.034.
  6. Sadovskii A. P. [Centers and their isochronous]. XII Belorusskaya matematicheskaya konferentsiya : materialy Mezhdunar. nauchn. konf. (Minsk, 5–10 Sept., 2016) : in 5 parts. Minsk, 2016. Part 2. P. 52 (in Russ.).
  7. Cox D., Little J., O’Shi D. Idealy, mnogoobraziya i algoritmy. Vvedenie v vychislitelʼnye aspekty algebraicheskoi geometrii i kommutativnoi algebry [Ideals, varieties and algorithms. Introduction to computational aspects of algebraric geometry and commutative algebra]. Moscow, 2000 (in Russ.).
  8. Sadovskii A. P. [Polynomial ideals and varieties: tutorial for students]. Minsk, 2008 (in Russ.).
  9. Sadovskii A. P. [On the center-focus conditions for equations of nonlinear oscillations]. Differenatsial’nye uravn. [Differ. Equ.]. 1979. Vol. 15, No. 9. P. 1716 –1719 (in Russ.).
  10. Sadovskii A. P., Shcheglova T. V. [Lienard system with complex parameters and Cherkas’s method]. Vesnik Grodzenkaga Dzjarzhawnaga universitjeta imja Janki Kupaly. Ser. 2, Matjematyka. Fizika. Infarmatyka, vylichalʼnaja tjehnika i wprawlenne. 2014. No. 1(170). P. 21–33 (in Russ.).
  11. Sadovskii A. P., Shcheglova T. V. [Center varieties of complex and real two-dimensional autonomous polynomial differential systems]. Doklady Natsional’noi akad. nauk Belarusi. 2015. Vol. 59, No. 4. P. 34 – 40 (in Russ.).
Published
2018-01-23
Keywords: center-focus problem, Kukles system, complex center variety, focal values, normal forms, radical of ideal
How to Cite
Sadovskii, A. P., Makavetskaya, T. V., & Cherginets, D. N. (2018). The radical of the focal values ideal of the complex Kukles system. Journal of the Belarusian State University. Mathematics and Informatics, 2, 4-11. Retrieved from https://journals.bsu.by/index.php/mathematics/article/view/742