Verification of modular secret sharing

  • Maksim M. Vaskouski Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus
  • Gennadii V. Matveev Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

Abstract

In the present paper new scheme of secret verification are constructed. Verification with trusted party participation is conducted with help of an external device, which takes an arbitrary polynomial S(x), input element x0 ∈ Fpn and returns a value ξS(x0), where ξ is an Fpn – valued uniformly distributed random variable. It is shown that using of such device allows any user to verify his secret. Polynomial verification scheme is based on verification of divisibility g(x)|f(x) in the ring Z[x]. Only a value of polynomial S(x) in unknown point x = l is disclosed at the proposed verification method. Benaloh’s verification of the modular scheme allows any shareholder to ensure in consistency of all partial secrets, i. e. any legal group of shareholders can restore the secret S(x) correctly. None information about the secret S(x), excepting a prior information, is disclosed. The proposed protocols can be used safely for schemes over arbitrary finite fields without additional restrictions on a size of a filed. 

Author Biographies

Maksim M. Vaskouski, Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

PhD (physics and mathematics), docent; associate professor at the department of higher mathematics, faculty of applied mathematics and computer sciences

Gennadii V. Matveev, Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

PhD (physics and mathematics), docent; associate professor at the department of higher mathematics, faculty of applied mathematics and computer sciences

References

  1. Cramer R., Damgard I., Nielsen J. Multiparty Computation from Threshold Homomorphic Encryption // Lect. notes comput. sci. 2001. Vol. 2045. P. 280 –300.
  2. Bethencourt J., Sahai A., Waters B. Ciphertext-policy attribute-based encryption. Proceedings of IEEE Symposium on Security and Privacy. Berkley, 2007. P. 321–334.
  3. Benaloh J. Secret sharing homomorphisms: keeping shares of a secret. Lect. Notes Comput. Sci. 1987. Vol. 263. P. 251–260.
  4. Blum M., Feldman P., Micali S. Non Interactive Zero-Knowledge and Its Applications. Proceedings of the 20th aCM Symposium on Theory of Computing. New York, 1988. P. 103–112. DOI: 10.1145/62212.62222.
  5. Galibus T., Matveev G., Shenets N. Some structural and security properties of the modular secret sharing. Proceedings of SYNASC’08 : IEEE Comp. soc. press (Timisoara, 26 –29 Sept., 2008). Timisoara, 2008. P. 197–200.
  6. Informatsionnye tekhnologii i bezopasnost’. Algoritmy razdeleniya sekreta : STB 34.101.60 –2011. Introd. 01.07.2011 (in Russ.).
  7. Galibus T. V., Matveev G. V. Verification of the modular secret sharing parameters. Vestnik BGU. Ser. 1, Fiz. Mat. Inform. 2015. No. 1. P. 76 –79 (in Russ.).
  8. Galibus T., Matveev G. Generalized Mignotte Sequences in Polynomial Rings. ENTCS. 2007. Vol. 186. P. 43– 48.
  9. Shamir A. How to share a secret. Commun. aCM. 1979. Vol. 22, No. 11. P. 612– 613.
  10. Asmuth C. A., Bloom J. A modular approach to key safeguarding. IEEE Trans. Inf. Theory. 1983. Vol. 29, issue 2. P. 208–210. DOI: 10.1109/TIT.1983.1056651.
  11. Vaskouski M. M., Matveev G. V. [Polynomial verifications of the shamir scheme]. Information Systems and Technologies : Int. cong. comput. sci. (Minsk, 24 –27 Oct., 2016). Minsk, 2016. P. 431– 433 (in Russ.).
Published
2018-01-24
Keywords: polynomial modular scheme, secret, partial secret, finite field
How to Cite
Vaskouski, M. M., & Matveev, G. V. (2018). Verification of modular secret sharing. Journal of the Belarusian State University. Mathematics and Informatics, 2, 17-22. Retrieved from https://journals.bsu.by/index.php/mathematics/article/view/744
Section
Mathematical Logic, Algebra and Number Theory