The solution of the nonaxisymmetric stationary problem of heat conduction for the polar-orthotropic annular plate of variable thickness with thermal insulated bases

  • Uladzimir V. Karalevich International Center of Modern Education, 704/61 Štěpánská, Prague PSČ 110 00, Czech
  • Dmitrij G. Medvedev Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

Abstract

In the work is given the solution of nonaxisymmetric stationary heat conduction problem for profiled polar-orthotropic annular plates with thermally insulated bases. The dependence of the thermophysical characteristics of the plate material of the temperature is taken into account. Temperature values are set on the contours of the annular plate: temperature T0 is constant on the internal contour, and on the outer contour on several arcs with length li  (i = 1, k) – temperature is T1 (T1T0). The temperature distribution in such a plate is nonaxisymmetric. It is assumed that the radial λr and tangential λθ heat conduction coefficients are linearly dependent on the temperature T(r, θ): λr(T) = λ(0)r(1 - γT(r, θ)), λθ(T) = λ(0)θ(1 - γT(r, θ)) here the parameter γ > 1; the constants λ(0)r, λ(0)θ are determined experimentally at the primary temperature T0. The primary nonlinear differential heat equation is reduced to a linear differential equation of the 2nd kind in partial derivatives when a new function Z(r, θ) = [T(r, θ) - γ/2T2(r, θ)] is introduced in consideration.

Author Biographies

Uladzimir V. Karalevich, International Center of Modern Education, 704/61 Štěpánská, Prague PSČ 110 00, Czech

lecturer

Dmitrij G. Medvedev, Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

PhD (physics and mathematics), docent; dean of the faculty of mechanics and mathematics

References

  1. Uzdalev A. I. Nekotorye zadachi termouprugosti anizotropnogo tela [Some problems of thermoelasticity of an anisotropic body]. Saratov : Publ. House of the Saratov Univ., 1967 (in Russ.).
  2. Uzdalev A. I., Bryukhanova E. N. Equations of thermal conductivity for plates of variable thickness with inhomogeneous thermophysical properties. Zadachi prikladnoi teorii uprugosti [Problems of Applied Theory of Elasticity] : Interuniv. sci. collect. Saratov : Saratov Polytech. Inst., 1985. P. 3–7 (in Russ.).
  3. Dmitrienko Y. I. Mekhanika kompozitsionnykh materialov pri vysokikh temperaturakh [Mechanics of composite materials at high temperatures]. Moscow : Mashinostroenie, 1997 (in Russ.).
  4. Karalevich U. V., Medvedev D. G. Solution of the axisymmetric stationary problems of the heat conductivity for the polar-orthotropic ring plate of variable thickness with thermally insulated bases and with themperature dependent thermophysical characteristics. Vestnik BGU. Ser. 1, Fiz. Mat. Inform. 2016. No. 3. P. 160 –165 (in Russ.).
  5. Kamke E. Spravochnik po obyknovennym differentsialʼnym uravneniyam [Reference book of ordinary differential equations]. Moscow : Nauka, 1976 (in Russ.).
  6. Kovalenko A. D. Kruglye plastinki peremennoi tolshchiny [Round plates of variable thickness]. Moscow : Fizmatgiz, 1959 (in Russ.).
  7. Krasnov M. L., Kisilev A. I., Makarenko G. I. Integralʼnye uravneniya: zadachi i primery s podrobnymi resheniyami [Integral equations: problems and examples with detailed solutions]. Moscow : KomKniga, 2007 (in Russ.).
  8. Verlan’ A. F., Sizikov V. S. Integralʼnye uravneniya: metody, algoritmy, programmy [Integral equations: methods, algorithms, programs]. Kiev : Nauka, 1986 (in Russ.).
Published
2018-05-05
Keywords: composite material, temperature, polar-orthotropic annular plate, stationary heat conduction equation, differential equation, Volterra integral equation of the 2nd kind, resolvent, quadratic equation, plate of power profile, conical plate, plate of exponential profile
How to Cite
Karalevich, U. V., & Medvedev, D. G. (2018). The solution of the nonaxisymmetric stationary problem of heat conduction for the polar-orthotropic annular plate of variable thickness with thermal insulated bases. Journal of the Belarusian State University. Mathematics and Informatics, 1, 77-87. Retrieved from https://journals.bsu.by/index.php/mathematics/article/view/888