Характеристика мотивов использования электронных социальных сетей студентами с различными показателями коммуникативной компетентности

  • Иван Валентинович Ткачёв Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

Аннотация

Изучены различия в силе мотивов использования электронных социальных сетей студентами с разными показателями коммуникативной компетентности. Гипотезой исследования являлось предположение о том, что у респондентов с высокими и низкими показателями коммуникативной компетентности мотивы использования электронных социальных сетей, в основе которых лежат социальные потребности, сильнее, чем у студентов со средними показателями коммуникативной компетентности. Для диагностики исследуемых феноменов проводилось офлайн-анкетирование в четырех университетах Беларуси (n = 488). Установлено, что у студентов со средними показателями коммуникативной компетентности мотивы использования электронных социальных сетей наиболее сильные. Полученные результаты вносят вклад в понимание роли коммуникативной компетентности студентов в мотивации использования электронных социальных сетей и могут применяться при разработке учебно-методических материалов по тематике цифровой коммуникации, а также при психологической коррекции проблемного использования электронных социальных сетей.

Биография автора

Иван Валентинович Ткачёв, Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

аспирант кафедры социальной и организационной психологии факультета философии и социальных наук. Научный руководитель – кандидат психологических наук, доцент Г. А. Фофанова

Литература

  1. Shevkun AV. [Communication competency as a means of social adaptation of first-year students]. Siberian Pedagogical Journal. 2007;3:158–164. Russian.
  2. Wright KB, Rosenberg J, Egbert N, Ploeger NA, Bernard DR, King S. Communication competence, social support, and depression among college students: a model of Facebook and face-to-face support network influence. Journal of health communication. 2013;18(1):41–57. DOI: 10.1080/10810730.2012.688250.
  3. Mat’yash OI, Pogol’sha VM, Kazarinova NV, Bibi S, Zaritskaya ZhV. Mezhlichnostnaya kommunikatsiya: teoriya i zhizn’ [Interpersonal communication: theory and life]. Saint-Petersburg: Rech’; 2011. 560 p. Russian.
  4. Tkachov IV. Component composition of communication competency and its measurement. Journal of the Belarusian State University. Philosophy and Psychology. 2022;2:85–92. Russian.
  5. Ellison NB, Boyd DM. Sociality through social network sites. In: Dutton WH, editor. The Oxford handbook of Internet studies. Oxford: Oxford University Press; 2013. p. 151–172. DOI: 10.1093/oxfordhb/9780199589074.013.0008.
  6. Katz E, Blumler JG, Gurevitch M. Uses and gratifications research. The Public Opinion Quarterly. 1973;37(4):509–523.
  7. Katz E, Haas H, Gurevitch M. On the use of the mass media for important things. American Sociological Review. 1973;38(2):164–181. DOI: 10.2307/2094393.
  8. Bae M. Understanding the effect of the discrepancy between sought and obtained gratification on social networking site users’ satisfaction and continuance intention. Computers in Human Behavior. 2018;79:137–153. DOI: 10.1016/j.chb.2017.10.026.
  9. Il’in EP. Motivatsiya i motivy [Motivation and motives]. Saint Petersburg: Piter; 2002. 512 р. Russian.
  10. McKenna K, Bargh JA. Plan 9 from cyberspace: the implications of the internet for personality and social psychology. Personality and Social Psychology Review. 2000;4(1):57–75. DOI: 10.1207/S15327957PSPR0401_6.
  11. Kraut R, Kiesler S, Boneva B, Cummings J, Helgeson V, Crawford A. Internet paradox revisited. Journal of Social Issues. 2002;58(1):49–74. DOI: 10.1111/1540-4560.00248.
  12. Williams D. On and off the ’Net: scales for social capital in an online era. Journal of computer-mediated communication. 2006;11(2):593–628. DOI: 10.1111/j.1083-6101.2006.00029.x.
  13. Cecilia Cheng, Hsinyi Wang, Leif Sigerson, Chorlam Chau. Do the socially rich get richer? A nuanced perspective on social network site use and online social capital accrual. Psychological bulletin. 2019;145(7):734–764. DOI: 10.1037/bul0000198.
  14. Hassan N, Sumardi N, Aziz RA. The influence of personality traits on communication competence. International Journal of Academic Research in Business and Social Sciences. 2019;13:493–505. DOI: 10.6007/IJARBSS/v9-i13/6999.
  15. Spitzberg BH, Canary DJ. Loneliness and relationally competent communication. Journal of Social and Personal Relationships. 1985;2(4):387–402. DOI: 10.1177/0265407585024001.
  16. Zakahi WR, Duran RL. All the lonely people: the relationship among loneliness, communicative competence, and communication anxiety. Communication Quarterly. 1982;30(3):203–209. DOI: 10.1080/01463378209369450.
  17. Rubin RB, Martin MM. Development of a measure of interpersonal communication competence. Communication Research Reports. 1994;11(1):33–44. DOI: 10.1080/08824099409359938.
  18. Hollenbaugh EE, Ferris AL, Casey DJ. How do social media impact interpersonal communication competence? A uses and gratifications approach. In: Desjarlais М, еditor. The psychology and dynamics behind social media interactions. Pennsylvania: IGI Global; 2020. p. 137–163. DOI: 10.4018/978-1-5225-9412-3.ch006.
  19. Spitzberg BH. Assessing the state of assessment: communication competence. In: Hannawa AF, Spitzberg BH, editors. Communication competence. Berlin: De Gruyter Mouton; 2015. p. 237–270. DOI: 10.1515/9783110317459-023.
  20. Nasledov AD, Shamaev AN. [Adapting the Tromso Social Intelligence Scale for Russian psychology students]. In: Zashchirinskaya OV, Shaboltas AV, editors. Psikhologiya XXI veka: sistemnyi podkhod i mezhdistsiplinarnye issledovaniya. Sbornik nauchnykh trudov uchastnikov Mezhdunarodnoi nauchnoi konferentsii molodykh uchenykh; 18–20 aprelya 2017 g.; Sankt-Peterburg, Rossiya. Tom 2 [Psychology of the 21st century: a systematic approach and interdisciplinary research. Collection of scientific papers of the participants of the International scientific conference of young scientists; 2017 April 18–20; Saint Petersburg, Russia. Volume 2]. Saint Peterburg: Skifiya-print. 2017. p. 296–301. Russian.
  21. Lyusin DV. [«EmIn» emotional intelligence questionnaire: new psychometric findings]. In: Lyusin DV, Ushakov DV, editors. Sotsial’nyi i emotsional’nyi intellekt: ot protsessov k izmereniyam [Social and emotional intelligence: from process to measurement]. Moscow: Institute of Psychology Russian Academy of Sciences; 2009. p. 264–278. Russian.
  22. Magomed-Eminov MSh. Motivatsiya dostizheniya: struktura i mekhanizmy [Achievement motivation: structure and mechanisms] [dissertation]. Moscow: Lomonosov Moscow State University; 1987. 343 p. Russian.
  23. Tkachov IV, Fofanova GA. Adaptation of the questionnaire «motives for using electronic social networks» on a sample of Belarusian students. Journal of the Belarusian State University. Philosophy and Psychology. 2023;1:82–94. Russian.
  24. Nasledov AD. IBM SPSS Statistics 20 i AMOS: professional’nyj statisticheskij analiz dannyh [IBM SPSS Statistics 20 and AMOS: professional statistical data analysis]. Saint Petersburg: Piter; 2013. 416 р. Russian.
  25. Lumley T, Diehr P, Emerson S, Lu Chen. The importance of the normality assumption in large public health data sets. Annual review of public health. 2002;23(1):151–169. DOI: 10.1146/annurev.publhealth.23.100901.140546.
  26. Schmider E, Ziegler M, Danay E, Bühner M. Is it really robust? Reinvestigating the robustness of ANOVA against violations of the normal distribution assumption. Methodology: European Journal of Research Methods for the Behavioral and Social Sciences. 2010;6(4):147–151. DOI: 10.1027/1614-2241/a000016.
  27. Blanca MJ, Alarcón R, Arnau J, Bono R, Bendayan R. Non-normal data: is ANOVA still a valid option? Psicothema. 2017;29(4):552–557. DOI: 10.7334/psicothema2016.383.
  28. Hair JF, Black WC, Babin BJ, Anderson RE. Multivariate data analysis. 7th еdition. New Jersey: Prentice Hall; 2013. 816 р.
  29. Awang Z. A handbook on structural equation modeling using AMOS graphic. 5th еdition. Kota Baru: Universiti Technologi MARA Press; 2012. 167 р.
  30. Litze Hu, Bentler PM. Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Structural Equation Modeling: a Multidisciplinary Journal. 1999;6(1):1–55. DOI: 10.1080/10705519909540118.
  31. Browne MW, Cudeck R. Alternative ways of assessing model fit. Sociological methods & Research. 1992;21(2):230–258. DOI: 10.1177/0049124192021002005.
  32. Satorra A, Bentler PM. Corrections to test statistics and standard errors in covariance structure analysis. In: von Eye A, Clogg CC, editors. Latent variables analysis: applications for developmental research. Thousand Oaks: Sage; 1994. p. 399–419.
  33. Cheung GW, Rensvold R. Evaluating Goodness-of-Fit indexes for testing measurement invariance. Structural Equation Modeling. 2002;9(2):233–255. DOI: 10.1207/S15328007SEM0902_5.
  34. Hout MC, Papesh MH, Goldinger SD. Multidimensional scaling. Wiley Interdisciplinary Reviews: Cognitive Science. 2013;4(1):93–103. DOI: 10.1002/wcs.1203.
  35. Şaliş İ, Bulut MT. Effects of communication competency and self-esteem on gaming addiction symptoms. Addicta: the Turkish Journal on Addictions. 2022;9(2):196–203. DOI: 10.5152/ADDICTA.2022.21097.
  36. Bubaš G, Spitzberg B. The relations of communication skills in face-to-face and computer-mediated communication. In: European Communication Research and Education Association. Communication Policies and Culture in Europe. Proceedings of the European Communication Research and Education Association 2 nd European Communication Conference; 2008 November 25–28; Barcelona, Spain. Barcelona: European Communication Research and Education Association; 2008. p. 1–19.
  37. Bouchillon BC. Social networking for interpersonal life: a competence-based approach to the rich get richer hypothesis. Social Science Computer Review. 2022;40(2):309–327. DOI: 10.1177/0894439320909506.
  38. Zywica J, Danowski J. The faces of Facebookers: investigating social enhancement and social compensation hypotheses; predicting Facebook™ and offline popularity from sociability and self-esteem, and mapping the meanings of popularity with semantic networks. Journal of Computer-Mediated Communication. 2008;14(1):1–34. DOI: 10.1111/j.1083-6101.2008.01429.x.
Опубликован
2023-11-05
Ключевые слова: компетентность, коммуникативная компетентность, электронные социальные сети, мотивы использования электронных социальных сетей, социальный интеллект, эмоциональный интеллект, мотив аффилиации, студенты
Как цитировать
Ткачёв, И. В. (2023). Характеристика мотивов использования электронных социальных сетей студентами с различными показателями коммуникативной компетентности. Журнал Белорусского государственного университета. Философия. Психология, 3, 67-82. Доступно по https://journals.bsu.by/index.php/philosophy/article/view/5324