Актуальные задачи использования композиционных и гибридных материалов на основе различных форм углерода в электромагнитных и биомедицинских приложениях
Аннотация
Представлен краткий обзор актуальных проблем прикладного электромагнетизма (беспроводная связь и защита информационных каналов от несанкционированного доступа, электромагнитная совместимость, биомедицина и др.), которые решаются за счет использования композиционных наноматериалов, в том числе на основе углеродных наноструктур. Подчеркнута важность прикладных разработок с применением механизмов тонкой настройки свойств углеродсодержащих структур, таких как функционализация, легирование, комплексообразование и гибридизация. Отмечена необходимость практического освоения новых методов создания композиционных и гибридных материалов с использованием 3D-печати, CVD и других химических технологий, а также новых видов композиционных материалов на основе пенообразных и губчатых структур, полых микроструктур структур «ядро – оболочка» с разным химическим составом, градиентных структур. Обзор содержит широкий перечень ссылок на оригинальные и обзорные публикации последних лет по исследованию и применению композиционных материалов на основе различных форм углерода. Этот перечень может быть полезен как преподавателям соответствующих дисциплин, так и молодым ученым, выбирающим свое научное направление или уже нацеленным на решение конкретных проблем взаимодействия электромагнитного излучения с наноструктурами. Отмечено, что задача опережающего развития ряда отраслей современной индустрии, таких как коммуникационные и биомедицинские технологии, требует существенных интеллектуальных и финансовых инвестиций в фундаментальные и прикладные исследования, а также совершенствования образовательных технологий в данной области, в первую очередь на базе передовых научно-учебных экспериментальных установок и комплексов. Обзор составлен по результатам работы VI Белорусско российского семинара-конференции «Углеродные наноструктуры, тонкие пленки и композиты: синтез, физико-химические свойства и применения».
Литература
- International Roadmap for Devices and Systems™: 2021 update. More Moore [Internet]. [S. l.]: Institute of Electrical and Electronics Engineers; 2021 [cited 2022 September 10]. 32 p. Available from: https://irds.ieee.org/editions/2021/more-moore.
- Hao H, Hui D, Lau D. Material advancement in technological development for the 5G wireless communications. Nanotechnology Reviews. 2020;9:683–699. DOI: 10.1515/ntrev-2020-0054.
- Banafaa M, Shayea I, Din J, Azmi MH, Alashbi A, Daradkeh YI, et al. 6G mobile communication technology: requirements, targets, applications, challenges, advantages, and opportunities. Alexandria Engineering Journal. 2023;64:245–274. DOI: 10.1016/j.aej.2022.08.017.
- Zhou Ye. Material foundation for future 5G technology. Accounts of Materials Research. 2021;2(5):306–310. DOI: 10.1021/accountsmr.0c00087.
- Kanerva M, Lassila M, Gustafsson R, O’shea G, Aarikka-Stenroos L, Hemilä J. Emerging 5G technologies affecting markets of composite materials [Internet]. [S. l.]: Excel Composites; 2018 [cited 2020 October 7]. 7 p. (Exel white paper; EWVL1:1:2018-1). Available from: https://www.luxturrim5g.com/s/Exel_whitepaper_2018_1.pdf.
- Srivastava SK, Manna K. Recent advancements in the electromagnetic interference shielding performance of nanostructured materials and their nanocomposites: a review. Journal of Materials Chemistry A. 2022;10(14):7431–7496. DOI: 10.1039/D1TA09522F.
- Antes J, Kallfass I. Performance estimation for broadband multi-gigabit millimeter- and submillimeter-wave wireless communication links. IEEE Transactions on Microwave Theory and Techniques. 2015;63(10):3288–3299. DOI: 10.1109/TMTT.2015.2467390.
- Dangi R, Lalwani P, Choudhary G, You I, Pau G. Study and investigation on 5G technology: a systematic review. Sensors. 2022; 22(1):26. DOI: 10.3390/s22010026.
- Sharma T, Chehri A, Fortier P. Review of optical and wireless backhaul networks and emerging trends of next generation 5G and 6G technologies. Transactions on Emerging Telecommunications Technologies. 2021;32(3):e4155. DOI: 10.1002/ett.4155.
- Davies AG, Burnett AD, Fan W, Linfield EH, Cunningham JE. Terahertz spectroscopy of explosives and drugs. Materials Today. 2008;11(3):18–26. DOI: 10.1016/S1369-7021(08)70016-6.
- Lavrukhin DV, Yachmenev AE, Goncharov YuG, Zaytsev KI, Khabibullin RA, Buryakov AM, et al. Strain-induced InGaAs-based photoconductive terahertz antenna detector. IEEE Transactions on Terahertz Science and Technology. 2021;11(4):417–424. DOI: 10.1109/TTHZ.2021.3079977.
- Tzydynzhapov G, Gusikhin P, Muravev V, Dremin A, Nefyodov Yu, Kukushkin I. New real-time subterahertz security body scanner. Journal of Infrared, Millimeter, and Terahertz Waves. 2020;41(6):632–641. DOI: 10.1007/s10762-020-00683-5.
- Chen X, Lindley-Hatcher H, Stantchev RI, Wang J, Li K, Serrano AH, et al. Terahertz (THz) biophotonics technology: instrumentation, techniques, and biomedical applications. Chemical Physics Reviews. 2022;3(1):011311. DOI: 10.1063/5.0068979.
- Rӧӧsli M, Dongus S, Jalilian H, Feychting M, Eyers J, Esu E, et al. The effects of radiofrequency electromagnetic fields exposure on tinnitus, migraine and non-specific symptoms in the general and working population: a protocol for a systematic review on human observational studies. Environment International. 2021;157:106852. DOI: 10.1016/j.envint.2021.106852.
- Liu Shike, Deng Zhichao, Li Jianwei, Wang Jin, Huang Ningning, Cui Ruiming, et al. Measurement of the refractive index of whole blood and its components for a continuous spectral region. Journal of Biomedical Optics. 2019;24(3):035003. DOI: 10.1117/1.JBO.24.3.035003.
- Betzalel N, Ben Ishai P, Einav S, Feldman Y. The AC conductivity of human sweat ducts as the dominant factor in the sub-THz reflection coefficient of skin. Journal of Biophotonics. 2021;14(7):e202100027. DOI: 10.1002/jbio.202100027.
- Fukunaga K. THz technology applied to cultural heritage in practice. Tokyo: Springer Japan; 2016. 144 p. (Cultural heritage science). DOI: 10.1007/978-4-431-55885-9.
- Koch Dandolo CL, Guillet J-P, Ma X, Fauquet F, Roux M, Mounaix P. Terahertz frequency modulated continuous wave imaging advanced data processing for art painting analysis. Optics Express. 2018;26(5):5358–5367. DOI: 10.1364/OE.26.005358.
- Agranat MB, Il’ina IV, Sitnikov DS. [Application of terahertz spectroscopy for remote express analysis of gases]. Teplofizika vysokikh temperatur. 2017;55(6):759–774. Russian. DOI: 10.7868/S0040364417060114.
- Takida Y, Nawata K, Minamide H. Security screening system based on terahertz-wave spectroscopic gas detection. Optics Express. 2021;29(2):2529–2537. DOI: 10.1364/OE.413201.
- Slepyan GYa, Boag A, Mordachev V, Sinkevich E, Maksimenko S, Kuzhir P, et al. Nanoscale electromagnetic compatibility: quantum coupling and matching in nanocircuits. IEEE Transactions on Electromagnetic Compatibility. 2015;57(6):1645–1654. DOI: 10.1109/TEMC.2015.2460678.
- Slepyan G, Boag A, Mordachev V, Sinkevich E, Maksimenko S, Kuzhir P, et al. Anomalous electromagnetic coupling via entanglement at the nanoscale. New Journal of Physics. 2017;19(2):023014. DOI: 10.1088/1367 2630/19/2/023014.
- Zhao W-S, Wang D-W, D’aloia AG, Chen W, Wang G, Yin W-Y. Recent progress of nano-electromagnetic compatibility (nanoEMC) in the emerging carbon nanoelectronics. IEEE Electromagnetic Compatibility Magazine. 2018;7(2):71–81. DOI: 10.1109/MEMC. 2018.8410686.
- Liu P, Cottrill AL, Kozawa D, Koman VB, Parviz DA, Liu T, et al. Emerging trends in 2D nanotechnology that are redefining our understanding of «Nanocomposites». Nanotoday. 2018;21:18–40. DOI: 10.1016/j.nantod.2018.04.012.
- Zeng X, Cheng X, Yu R, Stucky GD. Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon. 2020;168:606–623. DOI: 10.1016/j.carbon.2020.07.028.
- Green M, Chen X. Recent progress of nanomaterials for microwave absorption. Journal of Materiomics. 2019;5(4):503–541. DOI: 10.1016/j.jmat.2019.07.003.
- Maksimenko SA, Slepyan GYa. Nanoelectromagnetics of low-dimensional structures. In: Lakhtakia A, editor. Nanometer structures: theory, modeling, and simulation. Bellingham: SPIE Press; 2004. p. 145–206 (The handbook of nanotechnology).
- Slepyan GYa, Maksimenko SA, Lakhtakia A, Yevtushenko OM, Gusakov AV. Electrodynamics of carbon nanotubes: dynamic conductivity, impedance boundary conditions, and surface wave propagation. Physical Review B. 1999;60(24):17136–17149. DOI: 10.1103/PhysRevB.60.17136.
- Maksimenko SA, Slepyan GYa. [Electrodynamics of carbon nanotubes]. Radiotekhnika i elektronika. 2002;47(3):261–280. Russian.
- Slepyan GYa, Shuba MV, Maksimenko SA, Lakhtakia A. Theory of optical scattering by achiral carbon nanotubes and their potential as optical nanoantennas. Physical Review B. 2006;73(19):195416. DOI: 10.1103/PhysRevB.73.195416.
- Shuba MV, Slepyan GYa, Maksimenko SA, Thomsen C, Lakhtakia A. Theory of multiwall carbon nanotubes as waveguides and antennas in the infrared and the visible regimes. Physical Review B. 2009;79(15):155403. DOI: 10.1103/PhysRevB.79.155403.
- Batrakov K, Kuzhir P, Maksimenko S, Paddubskaya A, Voronovich S, Lambin P, et al. Flexible transparent graphene/polymer multilayers for efficient electromagnetic field absorption. Scientific Reports. 2014;4:7191. DOI: 10.1038/srep07191.
- Batrakov K, Kuzhir P, Maksimenko S, Volynets N, Voronovich S, Paddubskaya A, et al. Enhanced microwave-to-terahertz absorption in graphene. Applied Physics Letters. 2016;108(12):123101. DOI: 10.1063/1.4944531.
- Shuba MV, Paddubskaya AG, Kuzhir PP, Maksimenko SA, Flahaut E, Fierro V, et al. Short-length carbon nanotubes as building blocks for high dielectric constant materials in the terahertz range. Journal of Physics D: Applied Physics. 2017;50(8):08LT01. DOI: 10.1088/1361-6463/aa5628.
- Melnikov AV, Kuzhir PP, Maksimenko SA, Slepyan GYa, Boag A, Pulci O, et al. Scattering of electromagnetic waves by two crossing metallic single-walled carbon nanotubes of finite length. Physical Review B. 2021;103(7):075438. DOI: 10.1103/PhysRevB.103.075438.
- Slepyan GYa, Shuba MV, Maksimenko SA, Thomsen C, Lakhtakia A. Terahertz conductivity peak in composite materials containing carbon nanotubes: theory and interpretation of experiment. Physical Review B. 2010;81(20):205423. DOI: 10.1103/PhysRevB.81.205423.
- Shuba MV, Paddubskaya AG, Plyushch AO, Kuzhir PP, Slepyan GYa, Maksimenko SA, et al. Experimental evidence of localized plasmon resonance in composite materials containing single-wall carbon nanotubes. Physical Review B. 2012;85(16):165435. DOI: 10.1103/PhysRevB.85.165435.
- Bychanok DS, Paddubskaya AG, Kuzhir PP, Maksimenko SA, Brosseau C, Macutkevic J, et al. A study of random resistor-capacitor-diode networks to assess the electromagnetic properties of carbon nanotube filled polymers. Applied Physics Letters. 2013;103(24):243104. DOI: 10.1063/1.4847335.
- Bellucci S, Bistarelli S, Cataldo A, Micciulla F, Kranauskaite I, Macutkevic J, et al. Broadband dielectric spectroscopy of composites filled with various carbon materials. IEEE Transactions on Microwave Theory and Techniques. 2015;63(6):2024–2031. DOI: 10.1109/TMTT.2015.2418758.
- Shuba MV, Yuko DI, Kuzhir PP, Maksimenko SA, Kanygin MA, Okotrub AV, et al. How effectively do carbon nanotube inclusions contribute to the electromagnetic performance of a composite material? Estimation criteria from microwave and terahertz measurements. Carbon. 2018;129:688–694. DOI: 10.1016/j.carbon.2017.12.067.
- Shuba MV, Yuko D, Kuzhir PP, Maksimenko SA, Ksenevich VK, Lim S-H, et al. Electromagnetic and optical responses of a composite material comprising individual single-walled carbon-nanotubes with a polymer coating. Scientific Reports. 2020;10:9361. DOI: 10.1038/s41598-020-66247-8.
- Batrakov KG, Maksimenko SA, Kuzhir PP, Thomsen C. Carbon nanotube as a Cherenkov-type light emitter and free electron laser. Physical Review B. 2009;79(12):125408. DOI: 10.1103/PhysRevB.79.125408.
- Batrakov K, Maksimenko S. Graphene layered systems as a terahertz source with tuned frequency. Physical Review B. 2017;95(20):205408. DOI: 10.1103/PhysRevB.95.205408.
- Rutherglen C, Burke P. Nanoelectromagnetics: circuit and electromagnetic properties of carbon nanotubes. Small. 2009;5(8):884–906. DOI: 10.1002/smll.200800527.
- Chung DDL. Carbon composites. Composites with carbon fibers, nanofibers, and nanotubes. 2nd edition. Amsterdam: Elsevier; 2017. 682 p. DOI: 10.1016/C2014-0-02567-1.
- Capolino F, Khajavikhan M, Alù A. Metastructures: from physics to application. Applied Physics Letters. 2022;120(6):060401. DOI: 10.1063/5.0084696.
- Backes C, Abdelkader AM, Alonso C, Andrieux-Ledier A, Arenal R, Azpeitia J, et al. Production and processing of graphene and related materials. 2D Materials. 2020;7(2):022001. DOI: 10.1088/2053-1583/ab1e0a.
- Okotrub AV, Kubarev VV, Kanygin MA, Sedelnikova OV, Bulusheva LG. Transmission of terahertz radiation by anisotropic MWCNT/polystyrene composite films. Physica Status Solidi B. 2011;248(11):2568–2571. DOI: 10.1002/pssb.201100128.
- Bychanok DS, Kanygin MA, Okotrub AV, Shuba MV, Paddubskaya AG, Plyushch AO, et al. [Anisotropy of the electromagnetic properties of polymer composites based on multiwall carbon nanotubes in the gigahertz frequency range]. Pis’ma v ZhETF. 2011;93(10):669–673. Russian.
- Bychanok DS, Shuba MV, Kuzhir PP, Maksimenko SA, Kubarev VV, Kanygin MA, et al. Anisotropic electromagnetic properties of polymer composites containing oriented multiwall carbon nanotubes in respect to terahertz polarizer applications. Journal of Applied Physics. 2013;114(11):114304. DOI: 10.1063/1.4821773.
- Gorokhov GV, Bychanok DS, Kuzhir PP, Gorodetskiy DV, Kurenya AG, Sedelnikova OV, et al. Creation of metasurface from vertically aligned carbon nanotubes as versatile platform for ultra-light THz components. Nanotechnology. 2020;31(25):255703. DOI: 10.1088/1361-6528/ab7efa.
- Arutyunyan NR, Kanygin MA, Pozharov AS, Kubarev VV, Bulusheva LG, Okotrub AV, et al. Light polarizer in visible and THz range based on single-wall carbon nanotubes embedded into poly(methyl methacrylate) film. Laser Physics Letters. 2016;13(6):065901. DOI: 10.1088/1612-2011/13/6/065901.
- Okotrub AV, Asanov IP, Larionov SV, Kudashov AG, Leonova TG, Bulusheva LG. Growth of CdS nanoparticles on the aligned carbon nanotubes. Physical Chemistry Chemical Physics. 2010;12(36):10871–10875. DOI: 10.1039/C000189A.
- Bulusheva LG, Fedoseeva YuV, Kurenya AG, Vyalikh DV, Okotrub AV. Role of defects in carbon nanotube walls in deposition of CdS nanoparticles from a chemical bath. The Journal of Physical Chemistry C. 2015;119(46):25898–25906. DOI: 10.1021/acs.jpcc.5b07549.
- Fedoseeva YuV, Bulusheva LG, Okotrub AV, Kanygin MA, Gorodetskiy DV, Asanov IP, et al. Field emission luminescence of nanodiamonds deposited on the aligned carbon nanotube array. Scientific Reports. 2015;5:9379. DOI: 10.1038/srep09379.
- Harussani MM, Sapuan SM, Nadeem G, Rafin T, Kirubaanand W. Recent applications of carbon-based composites in defence industry: a review. Defense Technology. 2022;18(8):1281–1300. DOI: 10.1016/j.dt.2022.03.006.
- Przybył W, Januszko A, Radek N, Szczepaniak M, Bogdanowicz KA, Plebankiewicz I, et al. Microwave absorption properties of carbonyl iron-based paint coatings for military applications. Defence Technology. Forthcoming 2023. DOI: 10.1016/j.dt.2022.06.013.
- Liu Jianping, Zhang Run, Xu Zhi Ping. Nanoparticle-based nanomedicines to promote cancer immunotherapy: recent advances and future directions. Small. 2019;15(32):1900262. DOI: 10.1002/smll.201900262.
- Gautam M, Thapa RK, Poudel BK, Gupta B, Ruttala HB, Nguyen HT, et al. Aerosol technique-based carbon-encapsulated hollow mesoporous silica nanoparticles for synergistic chemo-photothermal therapy. Acta Biomaterialia. 2019;88:448–461. DOI: 10.1016/j.actbio.2019.02.029.
- Kościk I, Jankowski D, Jagusiak A. Carbon nanomaterials for theranostic use. C – Journal of Carbon Research. 2022;8(1):3. DOI: 10.3390/c8010003.
- Goenka S, Sant V, Sant S. Graphene-based nanomaterials for drug delivery and tissue engineering. Journal of Controlled Release. 2014;173:75–88. DOI: 10.1016/j.jconrel.2013.10.017.
- Nair A, Haponiuk JT, Thomas S, Gopi S. Natural carbon-based quantum dots and their applications in drug delivery: a review. Biomedicine & Pharmacotherapy. 2020;132:110834. DOI: 10.1016/j.biopha.2020.110834.
- Omel’yanchuk LV, Gurova OA, Okotrub AV. [Genotoxic effect of inorganic nanoparticles on the cell]. Rossiiskie nanotekhnologii. 2014;9(3–4):90–97. Russian.
- Gurova OA, Dubatolova TD, Shlyakhova EV, Omelyanchuk LV, Okotrub AV. Hyperthermal effect of infrared irradiation on aqueous dispersion of carbon nanotubes and their penetration into Drosophila melanogaster larvae. Physica Status Solidi B. 2018;255(1):1700264. DOI: 10.1002/pssb.201700264.
- Burlaka A, Lukin S, Prylutska S, Remeniak O, Prylutskyy Yu, Shuba M, et al. Hyperthermic effect of multi walled carbon nanotubes stimulated with near infrared irradiation for anticancer therapy: in vitro studies. Experimental Oncology. 2010;32(1):48–50.
- Farzin L, Saber R, Sadjadi S, Mohagheghpour E, Sheini A. Nanomaterials-based hyperthermia: a literature review from concept to applications in chemistry and biomedicine. Journal of Thermal Biology. 2022;104:103201. DOI: 10.1016/j.jtherbio.2022.103201.
- Sundaram P, Abrahamse H. Phototherapy combined with carbon nanomaterials (1D and 2D) and their applications in cancer therapy. Materials. 2020;13(21):4830. DOI: 10.3390/ma13214830.
- Wang Lei, Shi Jinjin, Liu Ruiyuan, Liu Yan, Zhang Jing, Yu Xiaoyuan, et al. Photodynamic effect of functionalized single-walled carbon nanotubes: a potential sensitizer for photodynamic therapy. Nanoscale. 2014;6(9):4642–4651. DOI: 10.1039/C3NR06835H.
- Lan M, Guo L, Zhao S, Zhang Z, Jia Q, Yan L, et al. Carbon dots as multifunctional phototheranostic agents for photoacoustic/fluorescence imaging and photothermal/photodynamic synergistic cancer therapy. Advanced Therapeutics. 2018;1(6):1800077. DOI: 10.1002/adtp.201800077.
- Golubewa L, Timoshchenko I, Romanov O, Karpicz R, Kulahava T, Rutkauskas D, et al. Single-walled carbon nanotubes as a photo-thermo-acoustic cancer theranostic agent: theory and proof of the concept experiment. Scientific Reports. 2020;10:22174. DOI: 10.1038/s41598-020-79238-6.
- Chung S, Revia R A, Zhang M. Graphene quantum dots and their applications in bioimaging, biosensing, and therapy. Advanced Materials. 2021;33(22):1904362. DOI: 10.1002/adma.201904362.
- Su S, Kang PM. Systemic review of biodegradable nanomaterials in nanomedicine. Nanomaterials. 2020;10(4):656. DOI: 10.3390/nano10040656.
- Cozzolino F, Marra F, Fortunato M, Bellagamba I, Pesce N, Tamburrano A, et al. New sensing and radar absorbing laminate combining structural damage detection and electromagnetic wave absorption properties. Sensors. 2022;22(21):8470. DOI: 10.3390/s22218470.
- Luo Feng, Liu Dongqing, Cao Taishan, Cheng Haifeng, Kuang Jiacai, Deng Yingjun, et al. Study on broadband microwave absorbing performance of gradient porous structure. Advanced Composites and Hybrid Materials. 2021;4(3):591–601. DOI: 10.1007/s42114-021-00275-4.
- Du Junsa, Zhang Pin, Qiu Leilei, Gao Xiaohui, Huang Shengxiang, He Longhui, et al. Chaos patterned metasurface absorber with multi-peak and broadband. Journal of Applied Physics. 2021;130(16):165101. DOI: 10.1063/5.0065004.
- Kazakova MA, Semikolenova NV, Korovin EYu, Zhuravlev VA, Selyutin AG, Velikanov DA, et al. Co/multi-walled carbon nanotubes/polyethylene composites for microwave absorption: tuning the effectiveness of electromagnetic shielding by varying the components ratio. Composites Science and Technology. 2021;207:108731. DOI: 10.1016/j.compscitech.2021.108731.
- Naiden EP, Suslyaev VI, Bir AV, Politov MV. [Magnetic permeability spectra of nanosized hexaferrite powders]. Zhurnal strukturnoi khimii. 2004;45(7):102–105. Russian.
- Zhuravlev VA, Suslyaev VI. Analysis of the microwave magnetic permeability spectra of ferrites with hexagonal structure. Russian Physics Journal. 2006;49(9):1032–1037. DOI: 10.1007/s11182-006-0220-8.
- Zhuravlev VA, Suslyaev VI. Analysis and correction of the magnetic permeability spectra of Ba3Co2Fe24O41 hexaferrite by using Cramers – Kronig relations. Russian Physics Journal. 2006;49(8):840–846. DOI: 10.1007/s11182-006-0183-9.
- Naiden EP, Zhuravlev VA, Suslyaev VI, Minin RV, Itin VI, Korovin EYu. Structure parameters and magnetic properties of Me2W1 cobalt-containing hexaferrite systems synthesized by the SHS method. Russian Physics Journal. 2011;53(9):974–982. DOI: 10.1007/s11182-011-9519-1.
- Minin RV, Zhuravlev VA, Lapshin OV, Itin VI, Svetlichnyi VA. Nanocrystalline cobalt ferrite powders by spray solution combustion synthesis. International Journal of Self-Propagating High-Temperature Synthesis. 2020;29(1):1–9. DOI: 10.3103/S1061386220010070.
- Zhuravlev VA, Wagner DV, Dotsenko OA, Kareva KV, Zhuravlyova EV, Chervinskaya AS, et al. Static and dynamic magnetic properties of polycrystalline hexaferrites of the Ba2Ni2 – xCux Fe12O22 system. Electronics. 2022;11(17):2759. DOI: 10.3390/electronics11172759.
- Aherrao DS, Singh C, Srivastava AK. Review of ferrite-based microwave-absorbing materials: origin, synthesis, morphological effects, dielectric/magnetic properties, composites, absorption mechanisms, and optimization. Journal of Applied Physics. 2022;132(24):240701. DOI: 10.1063/5.0123263.
- Maksimenko SA. Special section guest editor: fundamental and applied nanoelectromagnetics. Journal of Nanophotonics. 2012;6(1):061799. DOI: 10.1117/1.JNP.6.061799.
- Maffucci A, Maksimenko SA, editors. Fundamental and applied nanoelectromagnetics. Dordrecht: Springer; 2016. 290 p. (NATO science for peace and security series B: physics and biophysics). DOI: 10.1007/978-94-017-7478-9.
- Maffucci A, Maksimenko S, Svirko Yu, editors. Carbon-based nanoelectromagnetics. Amsterdam: Elsevier; 2019. 255 p. (Andrews DL, editor. Nanophotonics series).
- Maffucci A, Maksimenko SA, editors. Fundamental and applied nanoelectromagnetics II: THz circuits, materials, devices. Dordrecht: Springer; 2019. 214 p. (NATO science for peace and security series B: physics and biophysics). DOI: 10.1007/978-94-024-1687-9.
- Zhao Jijun, Liu Hongsheng, Yu Zhiming, Quhe Ruge, Zhou Si, Wang Yangyang, et al. Rise of silicene: a competitive 2D material. Progress in Materials Science. 2016;83:24–151. DOI: 10.1016/j.pmatsci.2016.04.001.
- Gogotsi Yu, Anasori B. The rise of MXenes. ACS Nano. 2019;13(8):8491–8494. DOI: 10.1021/acsnano.9b06394.
Copyright (c) 2023 Журнал Белорусского государственного университета. Физика

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция — Некоммерческое использование») 4.0 Всемирная.
Авторы, публикующиеся в данном журнале, соглашаются со следующим:
- Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution-NonCommercial. 4.0 International (CC BY-NC 4.0).
- Авторы сохраняют право заключать отдельные контрактные договоренности, касающиеся неэксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге) со ссылкой на ее оригинальную публикацию в этом журнале.
- Авторы имеют право размещать их работу в интернете (например, в институтском хранилище или на персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу. (См. The Effect of Open Access).