Регуляция проводимости электрических синапсов в условиях действия неспецифических экстрасинаптических факторов

  • Александр Викторович Сидоров Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

Аннотация

Рассмотрены вопросы структурно-функциональной организации щелевых контактов и регуляции их проводимости. На примере идентифицированного электротонического синапса между нейронами V. D. 1 и R. Pa. D. 2 из состава центральной нервной системы моллюска Lymnaea stagnalis проанализированы реакции таких соединений в разных температурных условиях, при сдвигах кислотно-основного равновесия (pH) и возрастании уровня активных форм кислорода (пероксида водорода) в межклеточном пространстве. Временна́я динамика наблюдаемых эффектов (минуты) свидетельствует о быстрой динамической модуляции электротонической передачи, связанной с изменением проводимости уже имеющихся каналов щелевого соединения (иннексонов), а не с увеличением их количества в области межклеточного контакта. Предполагается, что влияние указанных факторов реализуется за счет обратимых конформационных изменений структурных белков (иннексинов) контакта.

Биография автора

Александр Викторович Сидоров, Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

доктор биологических наук, доцент; профессор кафедры физиологии человека и животных биологического факультета

Литература

  1. Agnati L. F., Fuxe K., Zoli M., et al. A correlation analysis of the regional distribution of central enkephalin and β-endorphin immunoreactive terminals and of opiate receptors in adult and old male rats. Evidence for the existence of two main types of communication in the central nervous system: the volume transmission and the wiring transmission. Acta Physiol. Scan. 1986. Vol. 128, issue 2. P. 201–207. DOI: 10.1111/j.1748-1716.1986.tb07967.x.
  2. Agnati L. F., Leo G., Zanardi A., et al. Volume transmission and wiring transmission from cellular to molecular networks: history and perspectives. Acta Physiol. 2006. Vol. 187, issues 1–2. P. 329–344. DOI: 10.1111/j.1748-1716.2006.01579.x.
  3. Murad F. The role of nitric oxide in modulating guanylyl cyclase. Neurotransmissions. 1994. Vol. 10. P. 1– 4.
  4. Bjelke B., Goldstein M., Tinner B., et al. Dopaminergic transmission in the rat retina: evidence for volume transmission. J. Chem. Neuroanat. 1996. Vol. 12, issue 1. P. 37–50. DOI: 10.1016/S0891-0618(96)00176-7.
  5. Agnati L. F., Cortelli P., Biagini G., et al. Different classes of volume transmission signals exist in the central nervous system and are affected by metabolic signals, temperature gradients and pressure waves. Neuroreport. 1994. Vol. 6. P. 9 –12.
  6. Sykova E., Nicholson C. Diffusion in brain extracellular space. Physiol. Rev. 2008. Vol. 88, issue 4. P. 1277–1340. DOI: 10.1152/physrev.00027.2007.
  7. Nicholson C. Diffusion and related transport properties in brain tissue. Rep. Prog. Phys. 2001. Vol. 64, No. 7. P. 815–884. DOI: 10.1088/0034-4885/64/7/202.
  8. Dʼyakonova V. E., Sakharov D. A. [The neurotransmitter basis of mollusk behavior: the control of the choice between exploratory and defensive responses to the presentation of an unknown object]. Zh. Vyssh. Nervn. Deyat. im. I. P. Pavlova. 1994. Vol. 44, No. 3. P. 526 –531 (in Russ.).
  9. Dʼyakonova V. E. Behavioral functions of serotonin and octopamine: Some paradoxes of comparative physiology. Uspekhi Fiziol. Nauk. 2007. Vol. 38, No. 3. P. 3–20 (in Russ.).
  10. Dʼyakonova V. E. Neurotransmitter mechanisms of context-dependent behavior. Zh. Vyssh. Nervn. Deyat. im. I. P. Pavlova. 2012. Vol. 62, No. 6. P. 1–17 (in Russ.).
  11. Cowan W. M., Kandel E. R. A brief history of synapses and synaptic transmission. In: Synapses. Baltimore : Johns Hopkins University Press, 2001.
  12. Bennett M. V. Gap junctions as electrical synapses. J. Neurocytol. 1997. Vol. 26, issue 6. P. 349–366. DOI: 10.1023/A: 1018560803261.
  13. Falk M. M. Connexin-specific distribution within gap junctions revealed in living cells. J. Cell. Sci. 2000. Vol. 113, issue 22. P. 4109 – 4120.
  14. Connors B. W., Long M. A. Electrical synapses in the mammalian brain. Annu. Rev. Neurosci. 2004. Vol. 27. P. 393– 418. DOI: 10.1146/annurev.neuro.26.041002.131128.
  15. Sosinsky G. E., Nicholson B. J. Structural organization of gap junction channels. Biochim. Biophys. Acta. 2005. Vol. 1711, issue 2. P. 99 –125. DOI: 10.1016/j.bbamem.2005.04.001.
  16. Goodenough D. A., Goliger J. A., Paul D. L. Connexins, connexons, and intercellular communication. Annu. Rev. Biochem. 1996. Vol. 65. P. 475–502. DOI: 10.1146/annurev.bi.65.070196.002355.
  17. Phelan P. Innexins: Members of an evolutionarily conserved family of gap-junction proteins. Biochim. Biophys. Acta. 2005. Vol. 1711. P. 225–245. DOI: 10.1016/j.bbamem.2004.10.004.
  18. Weiss S. A., Preuss T., Faber D. S. A role of electrical inhibition in sensorimotor integration. Proc. Natl. Acad. Sci. 2008. Vol. 105, issue 46. P. 18047–18052. DOI: 10.1073/pnas.0806145105.
  19. Cantino D., Mugnaini E. The structural basis for electrotonic coupling in the avian ciliary ganglion. A study with thin sectioning and freeze-fracturing. J. Neurocytol. 1975. Vol. 4, issue 5. P. 505–536. DOI: 10.1007/BF01351535.
  20. Nagy J. I., Pereda A. E., Rash J. E. On the occurrence and enigmatic functions of mixed (chemical plus electrical) synapses in the mammalian CNS. Neurosci. Lett. 2017. PII: S0304-3940(17)30755-3. DOI: 10.1016/j.neulet.2017.09.021.
  21. Blumberg H., Jänig W. Activation of fibers via experimentally produced stump neuromas of skin nerves: ephaptic transmission or retrograde sprouting? Exp. Neurol. 1982. Vol. 76. P. 468 – 482.
  22. Rasminsky M. Spontaneous activity and cross-talk in pathological nerve fibers. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 1987. Vol. 65. P. 39 – 49.
  23. Saez J. C., Berthoud V. M., Branes M. C., et al. Plasma membrane channels formed by connexins: their regulation and functions. Physiol. Rev. 2003. Vol. 83, issue 4. P. 1359 –1400. DOI: 10.1152/physrev.00007.2003.
  24. Goodenough D. A., Paul D. L. Gap junctions. Cold Spring Harb. Perspect. Biol. 2009. DOI: 10.1101/cshperspect.a002576.
  25. Skerrett I. M., Williams J. A Structural and functional comparison of gap junction channels composed of connexins and innexins. Dev. Neurobiol. 2017. Vol. 77, issue 5. P. 522–547. DOI: 10.1002/dneu.22447.
  26. Winlow W., Qazzaz M. M., Johnson A. S. Bridging the gap – the ubiquity and plasticity of electrical synapses. EC Neurology. 2017. Vol. 7, issue 1. P. 7–12.
  27. Benjamin P. R., Ings C. T. Golgi-Cox studies on the central nervous system of a gastropod mollusk. Z. Zellforsch. 1972. Vol. 128. P. 564 –582.
  28. Soffe S. R., Benjamin P. R. Morphology of two electrically-coupled giant neurosecretory neurons in the snail Lymnaea stagnalis. Comp. Biochem. Physiol. 1980. Vol. 67A. P. 35– 46.
  29. Benjamin P. R., Pilkington J. B. The electrotonic location of low-resistance intercellular junctions between a pair of giant neurones in the snail Lymnaea. J. Physiol. 1986. Vol. 370. P. 111–126. PMCID: PMC1192671.
  30. Wildering W. C., van der Roest M., de Vlieger T. A., et al. Age-related changes in junctional and non-junctional conductances in two electrically coupled peptidergic neurons of the mollusc Lymnaea stagnalis. Brain Res. 1991. Vol. 547, issue 1. P. 96 –102. DOI: 10.1016/0006-8993(91)90578-J.
  31. Sidorov A. V., Kazakevich V. B. Еlectrical coupling between identified Lymnaea neurons: Nitric monoxide and temperature action. In: Protein Modules in Cellular Signalling. NATO Science Series: Life Sciences. 2001. Vol. 318. P. 150–153.
  32. Arellano R. O., Ramón F., Rivera A., et al. Calmodulin acts as an intermediary for the effects of calcium on gap junctions from crayfish lateral axons. J. Membr. Biol. 1988. Vol. 101, issue 1. P. 119 –131. DOI: 10.1007/BF01872827. 33. Heitler W. J., Edwards D. H. Effect of temperature on a voltage-sensitive electrical synapse in crayfish. J. Exp. Biol. 1998. Vol. 201, No. 4. P. 503–513.
  33. Prior D. J., Grega D. S. Effects of temperature on the endogenous activity and synaptic interactions of the salivary burster neuro nes in the terrestrial slug Limax maximus. J. Exp. Biol. 1982. Vol. 98. P. 415– 428.
  34. Nelson J. C., Wyman R. J. Examination of paralysis in Drosophila temperature-sensitive paralytic mutations affecting sodium channels; a proposed mechanism of paralysis. J. Neurobiol. 1990. Vol. 21, issue 3. P. 453– 469. DOI: 10.1002/neu.480210307.
  35. Sidorov A. V. [Nerve centers functional activity in invertebrates]. Minsk : BSU, 2011 (in Russ.).
  36. Sidorov A. V. Regulation and modulation of neuronal functions under interstitial pH alterations. Vestnik BGU. Ser. 2, Khim. Biol. Geogr. 2008. No. 3. P. 67–72 (in Russ.).
  37. Spray D. C., Harris A. L., Bennett M. V. L. Gap junctional conductance is a simple and sensitive function of intracellular pH. Science. 1981. Vol. 211, issue 4483. P. 712–715. DOI: 10.1126/science.6779379.
  38. Spray D. C., Stern J. H., Harris A. L., et al. Gap junctional conductance: comparison of sensitivities to H and Ca ions. Proc. Natl. Acad. Sci. USA. 1982. Vol. 79, issue 2. P. 441– 445. PMCID: PMC345759.
  39. Campos de Carvalho A., Spray D. C., Bennett M. V. pH Dependence of transmission at electrotonic synapses of the crayfish septate axon. Brain Res. 1984. Vol. 321, issue 2. P. 279–286. DOI: 10.1016/0006-8993(84)90180-X.
  40. Bodmer R., Verselis V., Levitan I. B., et al. Electrotonic synapses between Aplysia neurons in situ and in culture: aspects of regulation and measurement of permeability. J. Neurosci. 1988. Vol. 8, issue 5. P. 1656 –1670.
  41. Giaume C., Spira M. E., Korn H. Uncoupling of invertebrate electrotonic synapses by carbon dioxide. Neurosci. Lett. 1980. Vol. 17, issues 1–2. P. 197–202. DOI: 10.1016/0304-3940(80)90084-1.
  42. Gonzalez-Nieto D., Gomez-Hernandez J. M., Larrosaa B. Regulation of neuronal connexin-36 channels by pH. Proc. Natl. Acad. Sci. USA. 2008. Vol. 105, issue 44. P. 17169 –17174. DOI: 10.1073/pnas.0804189105.
  43. Sidorov A. V. Effect of hydrogen peroxide on electrical coupling between identified Lymnaea neurons. Invert. Neurosci. 2012. Vol. 12, issue 1. P. 63–68. DOI: 10.1007/s10158-012-0128-7.
  44. Upham B. L., Kang K. S., Cho H. Y., et al. Hydrogen peroxide inhibits gap junctional intercellular communication in glutathione sufficient but not glutathione deficient cells. Carcinogenesis. 1997. Vol. 18, issue 1. P. 37– 42. DOI: 10.1093/carcin/18.1.37.
  45. Hwang J. W., Jung J. W., Lee Y. S., et al. Indole-3-carbinol prevents H2O2-induced inhibition of gap junctional intercellular communication by inactivation of PKB. J. Vet. Med. Sci. 2008. Vol. 70, issue 10. P. 1057–1063. DOI: 10.1292/jvms.70.1057.
  46. Fallon R. F., Goodenough D. A. Five hour half-life of mouse liver gap junction protein. J. Cell. Biol. 1981. Vol. 90, issue 2. P. 521–526. DOI: 10.1083/jcb.90.2.521.
  47. Spray D. C., White R. L., Mazet F., et al. Regulation of gap junctional conductance. Am. J. Physiol. 1985. Vol. 248, issue 6. P. H753 – H764. DOI: 10.1152/ajpheart.1985.248.6.H753.
  48. Verselis V. K., Bennett M. V., Bargiello T. A. A voltage-dependent gap junction in Drosophila melanogaster. Biophys. J. 1991. Vol. 59, issue 1. P. 114 –126. DOI: 10.1016/S0006-3495(91)82204-4.
  49. Palacios-Prado N., Huetteroth W., Pereda A. E. Hemichannel composition and electrical synaptic transmission: molecular diversity and its implications for electrical rectification. Front. Cell. Neurosci. 2014. Vol. 8. P. 324. DOI: 10.3389/fncel.2014.00324.
  50. Harris A. L. Emerging issues of connexin channels: biophysics fills the gap. Q. Rev. Biophysics. 2001. Vol. 34, issue 3. P. 325– 472. DOI: 10.1017/S0033583501003705.
  51. Phelan P., Goulding L. A., Tam J. L., et al. Molecular mechanism of rectification at identified electrical synapses in the Drosophila giant fiber system. Curr Biol. 2008. Vol. 18, issue 24. P. 1955–1960. DOI: 10.1016/j.cub.2008.10.067. 53. Marder E. Roles for electrical coupling in neuronal circuits as revealed by selective neuronal deletions. J. Exp. Biol. 1984. Vol. 112, No. 1. P. 147–167.
  52. Sidorov A. V. Effect of acute temperature change on lung respiration of the mollusk Lymnaea stagnalis. J. Therm. Biol. 2005. Vol. 30, issue 2. P. 163–171. DOI: 10.1016/j.jtherbio.2004.10.002.
  53. Sidorov A. V., Polyanina I. P. Acid-base balance modulates respiratory and alimentary behaviour of the mollusc Lymnaea stagnalis. J. Evol. Biochem. Physiol. 2003. Vol. 39, issue 5. P. 555–561. DOI: 10.1023/B:JOEY.0000015963.87905.1d.
  54. Wildering W. C., Janse C. Serotonergic modulation of junctional conductance in an identified pair of neurons in the mollusc Lymnaea stagnalis. Brain Res. 1992. Vol. 595, issue 2. P. 343–352. DOI: 10.1016/0006-8993(92)91070-U.
  55. Smith M., Pereda A. E. Chemical synaptic activity modulates nearby electrical synapses. Proc. Natl. Acad. Sci. 2003. Vol. 100, issue 8. P. 4849 – 4854. DOI: 10.1073/pnas.0734299100.
  56. Sidorov A. V., Kazakevich V. B., Moroz L. L. Nitric oxide selectively enhances cAMP levels and electrical coupling between identified RPaD2/VD1 neurons in the CNS of Lymnaea stagnalis (L.). Acta Biol. Hung. 1999. Vol. 50, No. 1–3. P. 229–233.
  57. Arellano R. O., Ramón F., Rivera A., et al. Lowering of pH does not directly affect the junctional resistance of crayfish lateral axons. J. Membr. Biol. 1986. Vol. 94, issue 3. P. 293–299. DOI: 10.1007/BF01869725.
  58. Loewenstein W. R. Permeability of membrane junctions. Ann. NY Acad. Sci. 1966. Vol. 137, issue 2. P. 441– 472. DOI: 10.1111/ j.1749-6632.1966.tb50175.x.
  59. Garry A., Edwards D. H., Fallis I. F., et al. Ascorbic acid and tetrahydrobiopterin potentiate the EDHF phenomenon by generating hydrogen peroxide. Cardiovasc. Res. 2009. Vol. 84, issue 2. P. 218–226. DOI: 10.1093/cvr/cvp235.
  60. Edwards D. H., Li Y., Griffith T. M. Hydrogen peroxide potentiates the EDHF phenomenon by promoting endothelial Ca2+ mobilization. Arterioscler. Thromb. Vasc. Biol. 2008. Vol. 28. P. 1774 –1781. DOI: 10.1161/ATVBAHA.108.172692.
  61. Loewenstein W. R., Rose B. Calcium in (junctional) intercellular communication and a thought on its behavior in intracellular communication. Ann. NY Acad. Sci. 1978. Vol. 307. P. 285–307. DOI: 10.1111/j.1749-6632.1978.tb41958.x.
  62. Rouach N., Calvo C. F., Duquennoy H., et al. Hydrogen peroxide increases gap junctional communication and induce astrocyte toxicity: regulation by brain macrophages. Glia. 2004. Vol. 45, issue 1. P. 28–38. DOI: 10.1002/glia.10300.
  63. Ramachandran S., Xie L.-H., John S. A., et al. A novel role for connexin hemichannel in oxidative stress and smoking-induced cell injury. PLoS One. 2007. Vol. 2, issue 8. E. 712. DOI: 10.1371/journal.pone.0000712.
Опубликован
2018-05-03
Ключевые слова: объемная передача, температура, кислотно-основное равновесие, активные формы кислорода, идентифицированные нейроны
Поддерживающие организации Работа выполнена в рамках тем Белорусского республиканского фонда фундаментальных исследований (проекты № Б05М-055, Б08P-075) и государственной программы научных исследований «Конвергенция» (задание 3.3.03.4).
Как цитировать
Сидоров, А. В. (2018). Регуляция проводимости электрических синапсов в условиях действия неспецифических экстрасинаптических факторов. Экспериментальная биология и биотехнология, 1, 3-12. Доступно по https://journals.bsu.by/index.php/biology/article/view/2481
Раздел
Физиология и клеточная биология