Иммунобиологическая характеристика микроглиальных клеток и модели их изучения in vitro

  • Вероника Эдуардовна Мантивода Институт биофизики и клеточной инженерии НАН Беларуси, ул. Академическая, 27, 220072, г. Минск, Беларусь
  • Наталья Георгиевна Антоневич Институт биофизики и клеточной инженерии НАН Беларуси, ул. Академическая, 27, 220072, г. Минск, Беларусь
  • Андрей Евгеньевич Гончаров Институт биофизики и клеточной инженерии НАН Беларуси, ул. Академическая, 27, 220072, г. Минск, Беларусь

Аннотация

Микроглиальные клетки – это один из ключевых клеточных элементов центральной нервной системы. В последние годы появляется все больше данных о роли микроглиальных клеток в патогенезе различных психических и нейродегенеративных заболеваний. Однако исследование микроглии головного мозга человека ограничено по техническим и этическим причинам, в связи с чем актуальным направлением современной биологии и медицины является создание новой клеточной модели in vitro микроглии человека. Цель настоящего обзора состоит в описании функциональных и иммунологических свойств микроглии, а также основных моделей in vitro, используемых в настоящее время для исследования свойств клеток в норме и при патологии.

Биографии авторов

Вероника Эдуардовна Мантивода, Институт биофизики и клеточной инженерии НАН Беларуси, ул. Академическая, 27, 220072, г. Минск, Беларусь

младший научный сотрудник лаборатории иммунологии и клеточной биофизики

Наталья Георгиевна Антоневич, Институт биофизики и клеточной инженерии НАН Беларуси, ул. Академическая, 27, 220072, г. Минск, Беларусь

кандидат биологических наук; заведующий лабораторией иммунологии и клеточной биофизики

Андрей Евгеньевич Гончаров, Институт биофизики и клеточной инженерии НАН Беларуси, ул. Академическая, 27, 220072, г. Минск, Беларусь

кандидат медицинских наук, доцент; директор

Литература

  1. Wolf SA, Boddeke HWGM, Kettenmann H. Microglia in physiology and disease. Annual Review of Physiology. 2017;79:619–643. DOI: 10.1146/annurev-physiol-022516-034406.
  2. Kettenmann H, Hanisch U-K, Noda M, Verkhratsky A. Physiology of microglia. Physiological Reviews. 2011;91(2):461–553. DOI: 10.1152/physrev.00011.2010.
  3. De Picker LJ, Morrens M, Chance SA, Boche D. Microglia and brain plasticity in acute psychosis and schizophrenia illness course: a meta-review. Frontiers in Psychiatry. 2017;8:238. DOI: 10.3389/fpsyt.2017.00238.
  4. Barichello T, Simoes LR, Quevedo J, Zhang XY. Microglial activation and psychotic disorders: evidence from pre-clinical and clinical studies. In: Khandaker GM, Meyer U, Jones PB, editors. Neuroinflammation and schizophrenia. Cham: Springer; 2020. p. 161–205 (Current topics in behavioral neurosciences; volume 44). DOI: 10.1007/7854_2018_81.
  5. World Health Organization, Regional Office for Europe. Mental health: facing the challenges, building solutions. Report from the WHO European ministerial conference. Copenhagen: WHO Regional Office for Europe; 2005. XI, 182 p.
  6. Timmerman R, Burm SM, Bajramovic JJ. An overview of in vitro methods to study microglia. Frontiers in Cellular Neuroscience. 2018;12:242. DOI: 10.3389/fncel.2018.00242.
  7. Galatro TF, Holtman IR, Lerario AM, Vainchtein ID, Brouwer N, Sola PR, et al. Transcriptomic analysis of purified human cortical microglia reveals age-associated changes. Nature Neuroscience. 2017;20(8):1162–1171. DOI: 10.1038/nn.4597.
  8. Smith AM, Dragunow M. The human side of microglia. Trends in Neurosciences. 2014;37(3):125–135. DOI: 10.1016/j.tins.2013.12.001.
  9. Abud EM, Ramirez RN, Martinez ES, Healy LM, Nguyen CHH, Newman SA, et al. iPSC-derived human microglia-like cells to study neurological diseases. Neuron. 2017;94(2):278–293. DOI: 10.1016/j.neuron.2017.03.042.
  10. Haenseler W, Sansom SN, Buchrieser J, Newey SE, Moore CS, Nicholls FJ, et al. A highly efficient human pluripotent stem cell microglia model displays a neuronal-co-culture-specific expression profile and inflammatory response. Stem Cell Reports. 2017;8(6):1727–1742. DOI: 10.1016/j.stemcr.2017.05.017.
  11. Ziebell JM, Taylor SE, Cao T, Harrison JL, Lifshitz J. Rod microglia: elongation, alignment, and coupling to form trains across the somatosensory cortex after experimental diffuse brain injury. Journal of Neuroinflammation. 2012;9:247. DOI: 10.1186/1742-2094-9-247.
  12. Ramón y Cajal S. The structure and connexions of neurons. In: Nobel lectures. Physiology or medicine, 1901–1921 [Internet]. Amsterdam: Elsevier Publishing Company; 1967 [cited 2021 August 30]. p. 220–253. Available from: https://www.nobelprize.org/uploads/2018/06/cajal-lecture.pdf.
  13. Tremblay M-È, Lecours C, Samson L, Sánchez-Zafra V, Sierra A. From the Cajal alumni Achúcarro and Río-Hortega to the rediscovery of never-resting microglia. Frontiers in Neuroanatomy. 2015;9:45. DOI: 10.3389/fnana.2015.00045.
  14. Fujita S, Kitamura T. Origin of brain macrophages and the nature of the so-called microglia. In: Jellinger K, Seitelberger F, editors. Malignant lymphomas of the nervous system. International symposium organized by the Österreichische Arbeitsgemeinschaft für Neuropathologie and the Research Group of Neuropathology of the World Federation of Neurology; 1974 August 29–31; Wien, Austria. Berlin: Springer-Verlag; 1975. p. 291–296 (Acta neuropathologica: supplementum; volume 6). DOI: 10.1007/978-3-662-08456-4_51.
  15. Skoff RP. The fine structure of pulse labeled (3H-thymidine cells) in degenerating rat optic nerve. The Journal of Comparative Neurology. 1975;161(4):595–611. DOI: 10.1002/cne.901610408.
  16. McKanna JA. Lipocortin 1 immunoreactivity identifies microglia in adult rat brain. Journal of Neuroscience Research. 1993;36(4):491–500. DOI: 10.1002/jnr.490360415.
  17. Sántha K, Juba A. Weitere Untersuchungen über die Entwicklung der Hortegaschen Mikroglia. Archiv für Psychiatrie und Nervenkrankheiten. 1933;98:598–613. DOI: 10.1007/BF01814660.
  18. Perry VH, Hume DA, Gordon S. Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience. 1985;15(2):313–326. DOI: 10.1016/0306-4522(85)90215-5.
  19. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010;330(6005):841–845. DOI: 10.1126/science.1194637.
  20. Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Gomez Perdiguero E, et al. Microglia emerge from erythromyeloid precursors via PU.1- and IRF8-dependent pathways. Nature Neuroscience. 2013;16(3):273–280. DOI: 10.1038/nn.3318.
  21. Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K. Development of monocytes, macrophages, and dendritic cells. Science. 2010;327(5966):656–661. DOI: 10.1126/science.1178331.
  22. Ginhoux F, Prinz M. Origin of microglia: current concepts and past controversies. Cold Spring Harbor Perspectives in Biology. 2015;7(8):a020537. DOI: 10.1101/cshperspect.a020537.
  23. Colton CA. Heterogeneity of microglial activation in the innate immune response in the brain. Journal of Neuroimmune Pharmacology. 2009;4(4):399–418. DOI: 10.1007/s11481-009-9164-4.
  24. Tang Yu, Le Weidong. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Molecular Neurobiology. 2016;53(2):1181–1194. DOI: 10.1007/s12035-014-9070-5.
  25. Deczkowska A, Keren-Shaul H, Weiner A, Colonna M, Schwartz M, Amit I. Disease-associated microglia: a universal immune sensor of neurodegeneration. Cell. 2018;173(5):1073–1081. DOI: 10.1016/j.cell.2018.05.003.
  26. Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, et al. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nature Neuroscience. 2014;17(1):131–143. DOI: 10.1038/nn.3599.
  27. Yeh FL, Hansen DV, Sheng M. TREM2, microglia, and neurodegenerative diseases. Trends in Molecular Medicine. 2017;23(6):512–533. DOI: 10.1016/j.molmed.2017.03.008.
  28. Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S. Microglia-specific localisation of a novel calcium binding protein, Iba-1. Molecular Brain Research. 1998;57(1):1–9. DOI: 10.1016/s0169-328x(98)00040-0.
  29. Bennett ML, Bennett FC, Liddelow SA, Ajami B, Zamanian JL, Fernhoff NB, et al. New tools for studying microglia in the mouse and human CNS. PNAS. 2016;113(12):E1726 – E1746. DOI: 10.1073/pnas.1525528113.
  30. Sasaki Y, Hoshi M, Akazawa C, Nakamura Y, Tsuzuki H, Inoue K, et al. Selective expression of Gi/o-coupled ATP receptor P2Y12 in microglia in rat brain. Glia. 2003;44(3):242–250. DOI: 10.1002/glia.10293.
  31. Mildner A, Huang H, Radke J, Stenzel W, Priller J. P2Y12 receptor is expressed on human microglia under physiological conditions throughout development and is sensitive to neuroinflammatory diseases. Glia. 2017;65(2):375–387. DOI: 10.1002/glia.23097.
  32. Akiyama H, McGeer PL. Brain microglia constitutively express β-2 integrins. Journal of Neuroimmunology.1990;30(1):81–93. DOI: 10.1016/0165-5728(90)90055-r.
  33. Prinz M, Mildner A. Microglia in the CNS: immigrants from another world. Glia. 2011;59(2):177–187. DOI: 10.1002/glia.21104.
  34. Walker DG, Lue L-F. Immune phenotypes of microglia in human neurodegenerative disease: challenges to detecting microglial polarization in human brains. Alzheimer’s Research & Therapy. 2015;7:56. DOI: 10.1186/s13195-015-0139-9.
  35. Martin E, El-Behi M, Fontaine B, Delarasse C. Analysis of microglia and monocyte-derived macrophages from the central nervous system by flow cytometry. Journal of Visualized Experiments. 2017;124:55781. DOI: 10.3791/55781.
  36. Mizutani M, Pino PA, Saederup N, Charo IF, Ransohoff RM, Cardona AE. The fractalkine receptor but not CCR2 is present on microglia from embryonic development throughout adulthood. The Journal of Immunology. 2012;188(1):29–36. DOI: 10.4049/jimmunol.1100421.
  37. Rodhe J. Cell culturing of human and murine microglia cell lines. In: Joseph B, Venero JL, editors. Microglia: methods and protocols. New York: Humana Press; 2013. p. 11–16 (Methods in molecular biology; volume 1041). DOI: 10.1007/978-1-62703-520-0_2.
  38. Melief J, Sneeboer MAM, Litjens M, Ormel PR, Palmen SJMC, Huitinga I, et al. Characterizing primary human microglia: a comparative study with myeloid subsets and culture models. Glia. 2016;64(11):1857–1868. DOI: 10.1002/glia.23023.
  39. Mizee MR, Miedema SSM, van der Poel M, Adelia, Schuurman KG, van Strien ME, et al. Isolation of primary microglia from the human post-mortem brain: effects of ante- and post-mortem variables. Acta Neuropathologica Communications. 2017;5:16. DOI: 10.1186/s40478-017-0418-8.
  40. Lenz KM, Nelson LH. Microglia and beyond: innate immune cells as regulators of brain development and behavioral function. Frontiers in Immunology. 2018;9:698. DOI: 10.3389/fimmu.2018.00698.
  41. Burns TC, Li MD, Mehta S, Awad AJ, Morgan AA. Mouse models rarely mimic the transcriptome of human neurodegenerative diseases: a systematic bioinformatics-based critique of preclinical models. European Journal of Pharmacology. 2015;759:101–117. DOI: 10.1016/j.ejphar.2015.03.021.
  42. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–872. DOI: 10.1016/j.cell.2007.11.019.
  43. Sievers J, Parwaresch R, Wottge H-U. Blood monocytes and spleen macrophages differentiate into microglia-like cells on monolayers of astrocytes: morphology. Glia. 1994;12(4):245–258. DOI: 10.1002/glia.440120402.
  44. Leone C, Le Pavec G, Même W, Porcheray F, Samah B, Dormont D, et al. Characterization of human monocyte-derived microglia-like cells. Glia. 2006;54(3):183–192. DOI: 10.1002/glia.20372.
  45. Ohgidani M, Kato TA, Setoyama D, Sagata N, Hashimoto R, Shigenobu K, et al. Direct induction of ramified microglia-like cells from human monocytes: dynamic microglial dysfunction in Nasu – Hakola disease. Scientific Reports. 2014;4:4957. DOI: 10.1038/srep04957.
  46. Banerjee A, Lu Y, Do K, Mize T, Wu X, Chen X, et al. Validation of induced microglia-like cells (iMG cells) for future studies of brain diseases. Frontiers in Cellular Neuroscience. 2021;15:629279. DOI: 10.3389/fncel.2021.629279.
  47. Ormel PR, Böttcher C, Gigase FAJ, Missall RD, van Zuiden W, Fernández Zapata MC, et al. A characterization of the molecular phenotype and inflammatory response of schizophrenia patient-derived microglia-like cells. Brain, Behavior, and Immunity. 2020;90:196–207. DOI: 10.1016/j.bbi.2020.08.012.
  48. Etemad S, Zamin RM, Ruitenberg MJ, Filgueira L. A novel in vitro human microglia model: characterization of human monocyte-derived microglia. Journal of Neuroscience Methods. 2012;209(1):79–89. DOI: 10.1016/j.jneumeth.2012.05.025.
  49. Sellgren CM, Gracias J, Watmuff B, Biag JD, Thanos JM, Whittredge PB, et al. Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning. Nature Neuroscience. 2019;22(3):374–385. DOI: 10.1038/s41593-018-0334-7.
Опубликован
2022-10-28
Ключевые слова: микроглия, микроглиеподобные клетки, модели in vitro, клеточная биология
Как цитировать
Мантивода, В. Э., Антоневич, Н. Г., & Гончаров, А. Е. (2022). Иммунобиологическая характеристика микроглиальных клеток и модели их изучения in vitro. Экспериментальная биология и биотехнология, 3, 4-13. https://doi.org/10.33581/2957-5060-2022-3-4-13