Nuclear magnetic resonance relaxation efficiency of composite magnetic nanoparticles MgxZnyFe3–x–yO4 / polyelectrolyte shell for medical diagnostics

  • Tatsiana G. Shutava Institute of Chemistry of New Materials, National Academy of Science of Belarus, F. Skoriny street, 36, 220141, Minsk
  • Vladimir V. Pankov Belarusian State University, Nezavisimosti avenue, 4, 220030, Minsk
  • Kanstantsin S. Livanovich Institute of Chemistry of New Materials, National Academy of Science of Belarus, F. Skoriny street, 36, 220141, Minsk
  • Dzmitry A. Kotsikau Belarusian State University, Nezavisimosti avenue, 4, 220030, Minsk
  • Еlena G. Petrova Belarusian State University, Nezavisimosti avenue, 4, 220030, Minsk
  • Valentin O. Natarov Belarusian State University, Nezavisimosti avenue, 4, 220030, Minsk
  • Yury V. Bogachev Saint Petersburg Electrotechnical University «LETI», Professora Popova street, 5, 197376, Saint Petersburg
  • Anastasiya V. Nikitina Saint Petersburg Electrotechnical University «LETI», Professora Popova street, 5, 197376, Saint Petersburg
  • Aleksandra A. Kostina Saint Petersburg Electrotechnical University «LETI», Professora Popova street, 5, 197376, Saint Petersburg
  • Viktoriya A. Sabitova Saint Petersburg Electrotechnical University «LETI», Professora Popova street, 5, 197376, Saint Petersburg

Abstract

Nuclear magnetic resonance relaxation of protons in aqueous solutions of MgxZnyFe3 – x – yO4 ferrite nanoparticles, on the surface of which poly(diallyldimethylammonium chloride) is adsorbed, has been investigated. It was shown that the transverse relaxivity r2 is significantly higher than the longitudinal relaxivity r1 and depends on the composition and synthetic method of ferrites. Being of comparable sizes, MgxZnyFe3 – x – yO4 nanoparticles synthesized with carbonate possess higher values of r2 and r1 as compared with ferrites obtained by coprecipitation with base. It was concluded that magnetic nanoparticles stabilized with a polyelectrolyte shell can be used in development of negative contrast agents for magnetic resonance imaging diagnostics.

Author Biographies

Tatsiana G. Shutava, Institute of Chemistry of New Materials, National Academy of Science of Belarus, F. Skoriny street, 36, 220141, Minsk

PhD (chemistry); leading researcher

Vladimir V. Pankov, Belarusian State University, Nezavisimosti avenue, 4, 220030, Minsk

doctor of science (chemistry), full professor; head of the department of physical chemistry, faculty of chemistry

Kanstantsin S. Livanovich, Institute of Chemistry of New Materials, National Academy of Science of Belarus, F. Skoriny street, 36, 220141, Minsk

postgraduate student

Dzmitry A. Kotsikau, Belarusian State University, Nezavisimosti avenue, 4, 220030, Minsk

PhD (chemistry); associate professor at the department of physical chemistry, faculty of chemistry

Еlena G. Petrova, Belarusian State University, Nezavisimosti avenue, 4, 220030, Minsk

postgraduate student at the department of physical chemistry, faculty of chemistry

Valentin O. Natarov, Belarusian State University, Nezavisimosti avenue, 4, 220030, Minsk

masterʼs degree student at the department of physical chemistry, faculty of chemistry

Yury V. Bogachev, Saint Petersburg Electrotechnical University «LETI», Professora Popova street, 5, 197376, Saint Petersburg

PhD (physics and mathematics), docent; deputy head of the department of physics on scientific affairs,
faculty of electronics

Anastasiya V. Nikitina, Saint Petersburg Electrotechnical University «LETI», Professora Popova street, 5, 197376, Saint Petersburg

student at the faculty of information measurement and biotechnical systems

Aleksandra A. Kostina, Saint Petersburg Electrotechnical University «LETI», Professora Popova street, 5, 197376, Saint Petersburg

student at the faculty of information measurement and biotechnical systems

Viktoriya A. Sabitova, Saint Petersburg Electrotechnical University «LETI», Professora Popova street, 5, 197376, Saint Petersburg

student at the faculty of information measurement and biotechnical systems

References

  1. Hao R., Xing R., Xu Z., et al. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv. Mater. 2010. Vol. 22, No. 25. P. 2729 –2742.
  2. Wang Y. J., Hussain S. M., Krestin G. P. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur. Radiol. 2001. Vol. 11, No. 11. P. 2319 –2331.
  3. Wang Y. J. Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quant. Imaging Med. Surg. 2011. Vol. 1, No. 1. P. 35 – 40.
  4. Stephen Z. R., Kievit F. M., Zhang M. Magnetite nanoparticles for medical MR imaging. Mater. Today. 2011. Vol. 14, No. 7/8. Р. 331–338.
  5. Li L., Jiang W., Luo K., et al. Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking. Theranostics. 2013. Vol. 3, No. 8. P. 595 – 615.
  6. Na H. B., Hyeon T. MRI contrast agents based on inorganic nanoparticles. In Nanoplatform-based molecular imaging. Ed. X. Chen. N. Y., 2011. DOI: 10.1002/9780470767047.ch13.
  7. De Temmerman M., Soenen S. J., Symens N., et al. Magnetic layer-by-layer coated particles for efficient MRI of dendritic cells and mesenchymal stem cells. Nanomedicine. 2014. Vol. 9, No. 9. P. 1363–1376.
  8. Issa B., Qadri S., Obaidat I. M., et al. PEG coating reduces NMR relaxivity of Mn 0.5 Zn 0.5 Gd 0.02 Fe1.98 O4 hyperthermia nanoparticles. J. Magn. Reson. Imaging. 2011. Vol. 34, No. 5. P. 1192–1198.
  9. LaConte L. E. W., Nitin N., Zurkiya O., et al. Coating thickness of magnetic iron oxide nanoparticles affects R2 relaxivity. J. Magn. Reson. Imaging. 2007. Vol. 26, No. 6. P. 1634 –1641.
  10. Casula M. F., Corrias A., Arosio P., et al. Design of water-based ferrofluids as contrast agents for magnetic resonance imaging. J. Colloid Interface. Sci. 2011. Vol. 357, No. 1. P. 50 –55.
  11. Panʼkov V. V., Shutova T. G., Livonovich K. S., et al. Nanochastitsy Mg х Zn y Fe3 – x – y O4: sintez, magnitnye svoistva, funktsionalizatsiya poverkhnosti [Nanoparticles Mg х Zn y Fe3 – x – y O4: synthesis, magnetic properties, surface functionalization]. Vestsi NAN Belarusi. Ser. khim. navuk. 2017. No. 2 (in Russ.). Forthcoming.
  12. Menʼshikova V. L. Khimicheskii analiz v energetike [Chemical Analysis in Energetics] : in 5 books. Mosc., 2008. Book 1 : Fotometriya [Photometry] ; book 2 : Titrimetriya i gravimetriya [Titrimetry and Gravimetry] (in Russ.).
  13. Zhang L., Longo M. L., Stroeve P. Mobile Phospholipid Bilayers Supported on a Polyion /Alkylthiol Layer Pair. Langmuir. 2000. Vol. 16, No. 11. P. 5093–5099.
  14. De Geest B. G., De Koker S., Sukhorukov G. B., et al. Polyelectrolyte microcapsules for biomedical applications. Soft Matter. 2009. Vol. 5, No. 2. P. 282–291.
  15. Ahmad T., Bae H., Rhee I., et al. Particle size dependence of relaxivity for silica-coated iron oxide nanoparticles. Curr. Appl. Phys. 2012. Vol. 12, No. 3. P. 969–974.
Published
2017-11-29
Keywords: magnetic nanoparticles, ferrite, polyelectrolyte shell, relaxivity, contrast agent for magnetic resonance imaging diagnostics
Supporting Agencies The work was supported by Belarusian Republican Foundation for Fundamental Research (grant number X15MC-018).
How to Cite
Shutava, T. G., Pankov, V. V., Livanovich, K. S., Kotsikau, D. A., PetrovaЕ. G., Natarov, V. O., Bogachev, Y. V., Nikitina, A. V., Kostina, A. A., & Sabitova, V. A. (2017). Nuclear magnetic resonance relaxation efficiency of composite magnetic nanoparticles MgxZnyFe3–x–yO4 / polyelectrolyte shell for medical diagnostics. Journal of the Belarusian State University. Chemistry, 1, 10-15. Retrieved from https://journals.bsu.by/index.php/chemistry/article/view/1152