The spectral-luminescent properties of microcrystalline YАl3(ВО3)4 : Се3 +, Tb3 +, obtaining by coprecipitation method

  • Gvidona P. Shevchenko Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus
  • Yuliya V. Bokshyts Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus
  • Irina Y. Ivlieva Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus
  • Georgii E. Malashkevich Institute of Physics named after B. I. Stepanov, National Academy of Sciences of Belarus, 68-2 Niezaliežnasci Avenue, Minsk 220072, Belarus
  • Sergey E. Kichanov Joint Institute for Nuclear Research, 6 Joliot-Curie Street, Dubna 141980, Moscow Region, Russia

Abstract

YАl3(ВО3)4 : Се3+, Tb3+ microcrystals were synthesized via using colloid-chemical approach. The effect of sensitizing of Tb3+ ion luminescence by Се3+ ions, caused by electronic excitation energy transfer of Се3+ ions from 5d levels to 7Fj levels of Tb3+, was established. The efficiency of such sensitization is about 50 %. With the concentration of Се3+ being the same (1 at. %), doubling the Tb3+ concentration (from 5 to 10 at. %) will cause 10 % increase of sensitized luminescence efficiency of Tb3+.

Author Biographies

Gvidona P. Shevchenko, Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus

PhD (chemistry), docent; leading researcher at the laboratory of nanochemistry

Yuliya V. Bokshyts, Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus

PhD (chemistry); researcher at the laboratory of nanochemistry

Irina Y. Ivlieva, Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus

junior researcher at the laboratory of nanochemistry

Georgii E. Malashkevich, Institute of Physics named after B. I. Stepanov, National Academy of Sciences of Belarus, 68-2 Niezaliežnasci Avenue, Minsk 220072, Belarus

doctor of science (physics and mathematics); head of the laboratory of photophysics of activated materials

Sergey E. Kichanov, Joint Institute for Nuclear Research, 6 Joliot-Curie Street, Dubna 141980, Moscow Region, Russia

PhD (engineering); senior researcher at the laboratory of neutron physics

References

  1. Dutta D. P., Tyagi A. K. Inorganic phosphor materials for solid state white light generation. Solid State Phenom. 2009. Vol. 155. P. 113–143. DOI: 10.4028/www.scientific.net/SSP.155.113.
  2. Maia L. J. Q., Fick J., Bouchard C., et al. Elaboration and optimization of (Y, Er)Al3(BO3)4 glassy planar waveguides through the sol-gel process. Opt. Mat. 2010. Vol. 32, issue 3. P. 484–490.
  3. Koporulina E. V., Leonyuk N. I., Hansen D., et al. Flux growth and luminescence of Ho : YAl3(BO3)4 and PrAl3(BO3)4 crystals. J. Cryst. Growth. 1998. Vol. 191, issue 4. P. 767–773. DOI: 10.1016/S0022-0248(98)00347-9.
  4. Hong H. Y.-P., Dwight K. Crystal structure and fluorescence lifetime of NdAl3(BO3)4, a promising laser material. Mater. Res. Bull. 1974. Vol. 9, issue 12. P. 1661–1665. DOI: 10.1016/0025-5408(74)90158-5.
  5. Wang P., Dawes J., Dekker P., et al. Highly efficient diode-pumped ytterbium-doped yttrium aluminium borate laser. Opt. Commun. 2000. Vol. 174, issues 5/6. P. 467–470. DOI: 10.1016/S0030-4018(99)00686-0.
  6. Mazzera M., Baraldi A., Buffagni E., et al. Spectroscopic analysis of Pr3+ crystal-field transitions in YAl3(BO3)4. Appl. Phys. B. 2011. Vol. 104, issue 3. P. 603–617. DOI: 10.1007/s00340-011-4421-7.
  7. Leonyuk N. I., Leonyuk L. I. Growth and characterization of RM3(BO3)4 crystals. Prog. Cryst. Growth Charact. Mater. 1995. Vol. 31, issues 3/4. P. 179–278. DOI: 10.1016/0960-8974(96)83730-2.
  8. Jung S. T., Yoon J. T., Chung S. J. Phase transition of neodymium yttrium aluminium borate with composition. Mater. Res. Bull. 1996. Vol. 31, issue 8. P. 1021–1027. DOI: 10.1016/S0025-5408(96)00059-1.
  9. Jaque D., Capmany J., Molero F., et al. Up-conversion luminescence in the Nd3+ : YAB self frequency doubling laser crystal. Opt. Mater. 1998. Vol. 10, issue 3. P. 211–217.
  10. Watterich A., Aleshkevych P., Borowiec M. T., et al. Optical and magnetic spectroscopy of rare-earth-doped yttrium aluminium borate YAl3(BO3)4 single crystals. J. Phys.: Cond. Matter. 2003. Vol. 15, No. 19. P. 3323–3331. DOI: 10.1088/0953-8984/15/19/331.
  11. Liu Y., Yang Z., Yu Q., et al. Luminescence properties of Ba2LiB5O10 : Dy3+ phosphor. Mater. Lett. 2011. Vol. 65. P. 1956–1958. DOI: 10.1016/j.matlet.2011.04.002.
  12. [A method for producing polycrystalline yttrium aluminoborate with a chantite structure] : pat. 16458 of the Repub. of Belarus, MPK С 09 К 11/80, С 09 К 11/63. G. E. Malashkevich, G. P. Shevchenko, E. V. Tretʼyak, G. V. Shyshko ; appl. Inst. of Phys. of Natl. Acad. of Sci. of Belarus. No. a 20101690 ; declar. 10.11.2010 (in Russ.).
  13. Bokshyts Y. V., Brezhneva N. Y., Shevchenko G. P. Effect of the Chemical Nature of Precipitant on the Formation of Ultrafine YAl3(BO3)4 : Ce Powders. Neorgan. materialy [Inogr. Neorgan. Mater.]. 2016. Vol. 52, No. 11. P. 1217–1222 (in Russ.).
Published
2018-04-30
Keywords: coprecipitation, yttrium aluminium borate, luminescence, sensitization
Supporting Agencies The work has been supported by the Belarusian Republican Foundation for Fundamental Research (grant No. X17Д-012).
How to Cite
Shevchenko, G. P., Bokshyts, Y. V., Ivlieva, I. Y., Malashkevich, G. E., & Kichanov, S. E. (2018). The spectral-luminescent properties of microcrystalline YАl3(ВО3)4 : Се3 +, Tb3 +, obtaining by coprecipitation method. Journal of the Belarusian State University. Chemistry, 1, 61-66. Retrieved from https://journals.bsu.by/index.php/chemistry/article/view/1222