Polymerysation of carbazole-containing styrene-type monomers via RAFT mechanism

  • George K. Belousov Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieningradskaja Street, Minsk 220006, Belarus
  • Daniil S. Varabyou Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieningradskaja Street, Minsk 220006, Belarus
  • Aliaksei A. Vaitusionak Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieningradskaja Street, Minsk 220006, Belarus
  • Sergei V. Kostjuk Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieningradskaja Street, Minsk 220006, Belarus; Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

Abstract

An initiating system for the RAFT polymerisation of carbazole-containing styrene-type monomers in a wide range of molecular weights (3000–36 000 g/mol) has been developed. The proposed approach allowed to obtain carbazole-containing polymers with number average molecular weight up to 20 000 g/mol in a controlled fashion (degree of polydispersity <1.5). The relationship between the nature of donor substituents in carbazole, as well as the location of the carbazole moiety in the styrene and the activity of the corresponding monomer in radical polymerisation was studied. Experimental data gave good agreement with theoretical concepts and calculation models. The resulting polymers were characterised by high energy values of the highest occupied molecular orbital (up to –5.25 eV), which makes them promising materials for application in the LED industry.

Author Biographies

George K. Belousov, Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieningradskaja Street, Minsk 220006, Belarus

junior researcher at the laboratory of catalysis of polymerisation processes

Daniil S. Varabyou, Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieningradskaja Street, Minsk 220006, Belarus

probationer of junior researcher at the laboratory of catalysis of polymerisation processes

Aliaksei A. Vaitusionak, Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieningradskaja Street, Minsk 220006, Belarus

PhD (chemistry), docent; senior researcher at the laboratory of catalysis of polymerisation processes

Sergei V. Kostjuk, Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieningradskaja Street, Minsk 220006, Belarus; Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

doctor of science (chemistry), full professor; chief researcher at the laboratory of catalysis of polymerisation processes, Research Institute for Physical Chemical Problems, Belarusian State University, and head of the department of macromolecular compounds, faculty of chemistry, Belarusian State University

References

  1. Grazulevicius JV, Strohriegl P, Pielichowski J, Pielichowski K. Carbazole-containing polymers: synthesis, properties and applications. Progress in Polymer Science. 2003;28(9):1297–1353. DOI: 10.1016/S0079-6700(03)00036-4.
  2. Hoegl H. On photoelectric effects in polymers and their sensitization by dopants. The Journal of Physical Chemistry. 1965; 69(3):755–766. DOI: 10.1021/j100887a008.
  3. Hua J, Chen D, Jing X, Xu L, Yu Y, Zhang Y. Preparation and photoconducting property of C60Cln – m-bonded poly(N-vinylcarbazole) with C60Cln/CuCl/Bpy catalyst system. Journal of Applied Polymer Science. 2002;87(4):606–609. DOI: 10.1002/app.11320.
  4. Mori H, Ookuma H, Nakano S, Endo T. Xanthate-mediated controlled radical polymerization of N-vinylcarbazole. Macromolecular Chemistry and Physics. 2006;207(12):1005–1017. DOI: 10.1002/macp.200600070.
  5. Yan Y, Zhang W, Qiu Y, Zhang Z, Zhu J, Cheng Z, et al. Universal xanthate-mediated controlled free radical polymerizations of the «less activated» vinyl monomers. Journal of Polymer Science. Part A, Polymer Chemistry. 2010;48(22):5206–5214. DOI: 10.1002/ pola.24320.
  6. Haridharan N, Dhamodharan R. Controlled polymerization of carbazole-based vinyl and methacrylate monomers at ambient temperature: a comparative study through ATRP, SET, and SET-RAFT polymerizations. Journal of Polymer Science. Part A, Polymer Chemistry. 2011;49(4):1021–1032. DOI: 10.1002/pola.24518.
  7. Lessard B, Ling EJY, Morin MST, Marić M. Nitroxide‐mediated radical copolymerization of methyl methacrylate controlled with a minimal amount of 9‐(4‐vinylbenzyl)‐9H‐carbazole. Journal of Polymer Science. Part A, Polymer Chemistry. 2011;49(4):1033–1045. DOI: 10.1002/pola.24522.
  8. Mao T, Gou Y, Wang J, Wang H. Synthesis and properties of well-defined carbazole-containing fluorescent star polymers of different arms. e-Polymers. 2017;17(1):15–22. DOI: 10.1515/epoly-2016-0076.
  9. Lessard BH, Marić M. Water-soluble/dispersible carbazole‐containing random and block copolymers by nitroxide‐mediated radical polymerisation. The Canadian Journal of Chemical Engineering. 2013;91(4):618–629. DOI: 10.1002/cjce.21676.
  10. Lessard BH, Guillaneuf Y, Mathew M, Liang K, Clement J-L, Gigmes D, et al. Understanding the controlled polymerization of methyl methacrylate with low concentrations of 9-(4-vinylbenzyl)-9H-carbazole comonomer by nitroxide-mediated polymerization: the pivotal role of reactivity ratios. Macromolecules. 2013;46(3):805–813. DOI: 10.1021/ma3023525.
  11. Neugebauer D, Charasim D, Swinarew A, Stolarzewicz A, Krompiec M, Janeczek H, et al. Polymethacrylates with anthryl and carbazolyl groups prepared by atom transfer radical polymerization. Polymer Journal. 2011;43(5):448–454. DOI: 10.1038/ pj.2011.10.
  12. Turner SR, Pai DM. Synthesis and electronic transport properties of polymers and copolymers of β-N-carbazolylethyl vinyl ether. Macromolecules. 1979;12(1):1–4. DOI: 10.1021/ma60067a001.
  13. Stanislovaityte E, Simokaitiene J, Raisys S, Al-Attar H, Grazulevicius JV, Monkman AP, et al. Carbazole based polymers as hosts for blue iridium emitters: synthesis, photophysics and high efficiency PLEDs. Journal of Materials Chemistry C. 2013;1(48): 8209–8221. DOI: 10.1039/C3TC31441C.
  14. Strohriegl P. Polymers with pendant carbazole groups. 1. Synthesis and characterization of some novel polysiloxanes. Die Makromolekulare Chemie. Rapid Communications. 1986;7(12):771–775. DOI: 10.1002/marc.1986.030071204.
  15. Geissler U, Hallensleben ML, Rienecker A, Rohde N. Polyarylenes on the basis of alkylpyrrole and alkylcarbazole derivatives and their oligomeric model systems. Polymers for Advanced Technologies. 1997;8(2):87–92. DOI: 10.1002/(SICI)1099-1581 (199702)8:2<87::AID-PAT614>3.0.CO;2-K.
  16. Zhang Z-B, Fujiki M, Tang H-Z, Motonaga M, Torimitsu K. The first high molecular weight poly(N-alkyl-3,6-carbazole)s. Macromolecules. 2002;35(6):1988–1990. DOI: 10.1021/ma011911b.
  17. Morin J-F, Boudreault P-L, Leclerc M. Blue‐light‐emitting conjugated polymers derived from 2,7‐carbazoles. Macromolecular Rapid Communications. 2002;23(17):1032–1036. DOI: 10.1002/marc.200290000.
  18. Morin J-F, Leclerc M. 2,7-Carbazole-based conjugated polymers for blue, green, and red light emission. Macromolecules. 2002;35(22):8413–8417. DOI: 10.1021/ma020880x.
  19. West DP, Rahn MD, Im C, Bässler H. Hole transport through chromophores in a photorefractive polymer composite based on poly(N-vinylcarbazole). Chemical Physics Letters. 2000;326(5–6):407–412. DOI: 10.1016/S0009-2614(00)00849-6.
  20. Lynn B, Blanche P-A, Peyghambarian N. Photorefractive polymers for holography. Journal of Polymer Science. Part B, Polymer Physics. 2013;52(3):193–231. DOI: 10.1002/polb.23412.
  21. Li J, Grimsdale AC. Carbazole-based polymers for organic photovoltaic devices. Chemical Society Reviews. 2010;39(7):2399–2410. DOI: 10.1039/B915995A.
  22. Morin J-F, Leclerc M, Adès D, Siove A. Polycarbazoles: 25 years of progress. Macromolecular Rapid Communications. 2005;26(10):761–778. DOI: 10.1002/marc.200500096.
  23. Bhuvana KP, Bensingh RJ, Kader MA, Nayak SK. Polymer light emitting diodes: materials, technology and device. Polymer-Plastics Technology and Engineering. 2018;57(17):1784–1800. DOI: 10.1080/03602559.2017.1422269.
  24. Grimsdale AC, Chan KL, Martin RE, Jokisz PG, Holmes AB. Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chemical Reviews. 2009;109(3):897–1091. DOI: 10.1021/cr000013v.
  25. Dumur F. Carbazole-based polymers as hosts for solution-processed organic light-emitting diodes: simplicity, efficacy. Organic Electronics. 2015;25:345–361. DOI: 10.1016/j.orgel.2015.07.007.
  26. Tavasli M, Moore TN, Zheng Y, Bryce MR, Fox MA, Griffiths GC, et al. Colour tuning from green to red by substituent effects in phosphorescent tris-cyclometalated iridium(III) complexes of carbazole-based ligands: synthetic, photophysical, computational and high efficiency OLED studies. Journal of Materials Chemistry. 2012;22(13):6419–6428. DOI: 10.1039/C2JM15049B.
  27. Al-Attar HA, Griffiths GC, Moore TN, Tavasli M, Fox MA, Bryce MR, et al. Highly efficient, solution‐processed, single‐layer, electrophosphorescent diodes and the effect of molecular dipole moment. Advanced Functional Materials. 2011;21(12):2376–2382. DOI: 10.1002/adfm.201100324.
  28. Luszczynska B, Dobruchowska E, Glowacki I, Ulanski J, Jaiser F, Yang X, et al. Poly(N-vinylcarbazole) doped with a pyrazoloquinoline dye: a deep blue light-emitting composite for light-emitting diode applications. Journal of Applied Physics. 2006; 99(2):024505. DOI: 10.1063/1.2162268.
  29. Yang XH, Jaiser F, Klinger S, Neher D. Blue polymer electrophosphorescent devices with different electron-transporting oxadiazoles. Applied Physics Letters. 2006;88(2):021107. DOI: 10.1063/1.2162693.
  30. Vaitusionak AA, Vasilenko IV, Sych G, Kashina AV, Simokaitiene J, Grazulevicius JV, et al. Atom-transfer radical homo- and copolymerization of carbazole-substituted styrene and perfluorostyrene. European Polymer Journal. 2020;134:109843. DOI: 10.1016/ j.eurpolymj.2020.109843.
  31. Moad G, Rizzardo E, Thang SH. Living radical polymerization by the RAFT process – a third update. Australian Journal of Chemistry. 2012;65(8):985–1076. DOI: 10.1071/CH12295.
  32. Hou Y, Jiang J, Li K, Zhang Y, Liu J. Grafting amphiphilic brushes onto halloysite nanotubes via a living RAFT polymerization and their Pickering emulsification behavior. The Journal of Physical Chemistry B. 2014;118(7):1962–1967. DOI: 10.1021/jp411610a.
  33. Lai JT, Filla D, Shea R. Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient RAFT agents. Macromolecules. 2002;35(18):6754–6756. DOI: 10.1021/ma020362m.
  34. Belousov GK, Vaitusionak AA, Vasilenko IV, Ghasemi M, Andruleviciene V, Ivanchanka A, et al. Through-space charge-transfer thermally activated delayed fluorescence alternating donor – acceptor copolymers for nondoped solution-processable OLEDs. Macromolecules. 2023;56(7):2686–2699. DOI: 10.1021/acs.macromol.2c02582.
  35. Bell RP. The theory of reactions involving proton transfers. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.1936;154(882):414–429. DOI: 10.1098/rspa.1936.0060.
  36. Evans MG, Polanyi M. Further considerations on the thermodynamics of chemical equilibria and reaction rates. Transactions of the Faraday Society. 1936;32:1333–1360. DOI: 10.1039/TF9363201333.
  37. Keddie DJ. A guide to the synthesis of block copolymers using reversible-addition fragmentation chain transfer (RAFT) polymerization. Chemical Society Reviews. 2014;43(2):496–505. DOI: 10.1039/c3cs60290g.
  38. Ding J, Zhang B, Lü J, Xie Z, Wang L, Jing X, et al. Solution‐processable carbazole‐based conjugated dendritic hosts for power‐efficient blue‐electrophosphorescent devices. Advanced Materials. 2009;21(48):4983–4986. DOI: 10.1002/adma.200902328.
Published
2024-08-13
Keywords: radical polymerisation, carbazole-containing polymers, RAFT, organic LEDs
Supporting Agencies This work was carried out within the framework of the state programme of scientific research «Chemical processes, reagents and technologies, bioregulators and bioorganic chemistry» (assignment 2.1.01.03, state registration No. 20210512).
How to Cite
Belousov, G. K., Varabyou, D. S., Vaitusionak, A. A., & Kostjuk, S. V. (2024). Polymerysation of carbazole-containing styrene-type monomers via RAFT mechanism. Journal of the Belarusian State University. Chemistry, 2, 26-35. Retrieved from https://journals.bsu.by/index.php/chemistry/article/view/6386