Summary of heat flow studies in Nigeria
Abstract
A traditional approach for heat flow determination requires two parameters. They are a geothermal gradient and heat conductivity of rocks comprising the considered depth interval. The geothermal gradient is determined from a thermogram recorded in a wellbore and the heat conductivity is obtained from the laboratory measurements of selected rock samp les. There are some variations of this approach to both get the gradient and heat conductivity values. However, there are many areas without boreholes to register their thermograms, or at least to have several temperature readings at intermediate positions of bottom holes and traditional methods of heat flow determinations cannot be used. Recently another method was proposed to estimate heat flow. It was derived from spectral analysis of magnetic field. During last years it was widely used in Nigeria for areas where deep boreholes are absent. It uses estimates of depths to the base and bottom of the causative body derived from analysis of the magnetic field maps. The base of the causative body corres ponds to the depth of the Curie surface at which rocks lose their magnetic properties. It is known that it happens at the temperature around 580 °C that slightly varies depending on the content of magnetite within the causative body. The temperature at the top of this body is estimated. The heat flow density can be calculated knowing the geothermal gradient within this depth interval and heat conductivity of rocks. A preliminary heat flow density map was compiled based on all accessible heat flow data. A comparison of heat flow data from several regions of the country, determined using both methods provides rather good agreement.
References
- Odumodu CFR, Mode AW. Geothermal gradients and heat flow variations in parts of the eastern Niger Delta, Nigeria. Journal Geological Society of India. 2016;88(1):107–118. DOI: 10.1007/s12594-016-0463-0.
- Haenel R, Stegena L, Rybach L, editors. Handbook of terrestrial heat-flow density determination: guidelines and recommendations of the International Heat Flow Commission. Dordrecht: Springer; 1988. 486 p. (Solid Earth Sciences Library; volume 4). DOI: 10.1007/978-94-009-2847-3.
- Nagata T. Rock Magnetism. Tokyo: Maruzen; 1961. 350 p.
- Ross HE, Blakely RJ, Zoback MD. Testing the use of aeromagnetic data for the determination of Curie depth in California. Geophysics. 2006;71(5):51–59.
- Nwankwo LI, Olasehinde PI, Akaosile CO. An attempt to estimate the Curie point isotherm depth in the Nupe Basin west central Nigeria. Global Journal of Pure and Applied Science. 2009;15(3– 4):427– 433.
- Eletta BE, Udensi EE. Investigation of Curie point isotherm from the magnetic field of Eastern sector of central Nigeria. Journal of Geosciences. 2012;2:101–106. DOI: 10.5923/j.geo.20120204.05.
- Kasidi S, Nur A. Curie depth isotherm deduced from spectral analysis of Magnetic data over sarti and environs of North-Eastern Nigeria. Scholarly Journal of Biotechnology. 2012;1(3):49 –56.
- Ofor NP, Udensi EE. Determination of the heat flow in the Sokoto basin, Nigeria using spectral analysis of aeromagnetic data. Journal of Natural Sciences Research. 2014;4(6):83–93.
- Nwankwo LI. Estimation of depths to the bottom of magnetic sources and ensuing geothermal parameters from aeromagnetic data of Upper Sokoto Basin, Nigeria. Geothermics. 2015;54:76 – 81. DOI: 10.1016/j.geothermics.2014.12.001.
- Nwankwo LI, Shehu AT. Evaluation of Curie-point depths, geothermal gradients and near-surface heat flow from high-resolution aeromagnetic (HRAM) data of the entire Sokoto Basin, Nigeria. Journal of Volcanology and Geothermal Research. 2015;305: 45–55. DOI: 10.1016/j.jvolgeores.2015.09.017.
- Bhattacharyya BK. Continuous spectrum of the total magnetic field anomaly due to a rectangular prismatic body. Geophysics. 1966;31(1):97–121. DOI: 10.1190/1.1439767.
- Spector A, Grant FS. Statistical models for interpreting aeromagnetic data. Geophysics. 1970;35:293–302. DOI: 10.1190/ 1.1486578.
- Bhattacharyya BK, Leu L-K. Spectral analysis of gravity and magnetic anomalies due to two-dimensional structures. Geophysics. 1975;40:993–1013. DOI: 10.1190/1.1440593.
- Kasidi S, Nur A. Spectral analysis of magnetic data over Jalingo and Environs North-Eastern Nigeria. International Journal of Science and Research. 2013;2(2):447– 454.
- Bhattacharyya BK, Leu L-K. Analysis of magnetic anomalies over Yellowstone National Park: Mapping of Curie point isothermal surface for geothermal reconnaissance. Journal of Geophysical Research. 1975;80:4461– 4465. DOI: 10.1029/JB080i032p04461.
- Okubo Y, Graf RJ, Hansen RO, Ogawa K, Tsu H. Curie point depths of the Island of Kyushu and surrounding areas, Japan. Geophysics. 1985;50(3):383–506. DOI: 10.1190/1.1441926.
- Blakely RJ. Potential theory in gravity and magnetic applications. Cambridge: Cambridge University Press; 1995. 464 p. DOI: 10.1017/CBO9780511549816.
- Stampolidis A, Kane I, Tsokas GN, Tsourlos P. Curie point depths of Albania inferred from ground total field magnetic data. Surveys in Geophysics. 2005;26:461– 480. DOI: 10.1007/s10712-005-7886-2.
- Dolmaz MN, Ustaomer T, Hisarli ZM, Orbay N. Curie point depth variations to infer thermal structure of the crust at the African-Eurasian convergence zone, SW Turkey. Earth Planets Space. 2005;57:373–383.
- Tanaka AY, Okubo Y, Matsubayashi O. Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia. Tectonophysics. 1999;306:461– 470.
- Okubo Y, Tsu H, Ogawa K. Estimation of Curie point temperature and geothermal structure of Island arc of Japan. Tectonophysics. 1989;159(3– 4):279 –290. DOI: 10.1016/0040-1951(89)90134-0.
- Abraham EM, Obande EG, Chukwu M, Chukwu CG, Onwe MR. Estimating depth to the bottom of magnetic sources at Wikki Warm Spring region, northeastern Nigeria, using fractal distribution of sources approach. Turkish Journal of Earth Sciences. 2015; 24:494 –512. DOI: 10.3906/yer-1407-12.
- Stacey FD. Physics of the earth. 2nd edition. New York: John Wiley & Sons; 1977. 414 p.
- Nwankwo CN, Ekine AS, Nwosu LI. Estimation of the heat flow variation in the Chad Basin Nigeria. Journal of Applied Sciences and Environmental Management. 2009;13(1):73– 80.
- Ayuba RA, Nur A. Determination of Curie Depth Isotherm and Geothermal Studies over Parts of Nasarawa and Environs, North Central Nigeria. International Journal of Energy and Environmental Science. 2018;3(4):69 – 81. DOI: 10.11648/j.ijees.20180304.11.
- Turner DC. Volcanoes of the Biu Basalt, Northeastern Nigeria. Journal of Mining and Geology. 1978;15(2):49 – 63.
- Sedara SO, Joshua EO. Evaluation of the Existing State of Geothermal Exploration and Development in Nigeria. Journal of Advances in Physics. 2013;2(2):118 –123.
- Orife JM, Avbovbo AA. Stratigraphic and unconformity traps in the Niger Delta. American Association of Petroleum Geologists Bulletin. 1982;65:251–265.
- Mattick RE. Assessment of the petroleum, coal, and geothermal resources of the Economic Community of West African States (ECOWAS) region. Reston: U.S. Geological Survey; 1982. 87 p. DOI: 10.3133/ofr82714.
- Akpabio IO, Ejedawe JE. Temperature Variations in the Niger Delta Subsurface from Continuous Temperature logs. Global Journal of Pure and Applied Sciences. 2001;7:137–142.
- Onuoha KM, Ekine AS. Subsurface temperature variation and heat flow in the Anambra Basin, Nigeria. Journal of African Earth Sciences. 1999;28(3):641– 652. DOI: 10.1016/S0899-5362(99)00036-6.
- Emujakporue GO. Subsurface temperature distribution from heat flow conduction equation in part of Chad sedimentary basin, Nigeria. Egyptian Journal of Petroleum. 2017;26:519–524. DOI: 10.1016/j.ejpe.2016.07.003.
- Nwankwo CN, Ekine AS. Geothermal gradients in the Chad Basin, Nigeria, from bottom hole temperature logs. International Journal of Physical Sciences. 2009;4(12):777–783.
- Aliyu A, Salako KA, Adewumi T, Mohammed A. Interpretation of high resolution aeromagnetic data to estimate the Curie point depth isotherm of parts of middle benue trough, North-East, Nigeria. Physical Science International Journal. 2018;17(3):1– 9. DOI: 10.9734/PSIJ/2018/38651.
- Olorunsola K, Chukwu CG. Analysis of geothermal heat flow potentiality of Upper Bida Basin Nigeria using aeromagnetic data. International Journal of Applied Science and Research. 2018;5:9. DOI: 10.21767/2394-9988.100074.
- Nwankwo LI, Olasehinde PI, Akoshile CO. Heat flow anomalies from the spectral analysis of airborne magnetic data of Nupe Basin, Nigeria. Asian Journal of Earth Sciences. 2011;4(1):20 –28. DOI: 10.3923/ajes.2011.20.28.
- Nwankwo LI, Sunday AJ. Regional estimation of Curie-point depths and succeeding geothermal parameters from recently acquired high-resolution aeromagnetic data of the entire Bida Basin, north-central Nigeria. Geothermal Energy Science. 2017;5:1– 9. DOI: 10.5194/gtes-5-1-2017.
- Kasidi S, Kamureyina E, Joshua PT. Estimation of Curie depths, heat flow and geothermal gradient of Mubi and Environs North Eastern Nigeria. Journal of Geography, Environment and Earth Science International. 2018;18(4):1– 8. DOI: 10.9734/JGEESI/2018/46314.
- Abraham EM, Lawal KM, Ekwe AC, Alile O, Murana KA, Lawal AA. Spectral analysis of aeromagnetic data for geothermal energy investigation of Ikogosi Warm Spring – Ekiti State, southwestern Nigeria. Geothermal Energy. 2014;2:6. DOI: 10.1186/s40517014-0006-0.
- Avbovbo AA. Geothermal Gradients in the Southern Nigerian Basin. Bulletin of Canadian Petroleum Geology. 1978;26(2): 268 –274.
- Evamy BD, Haremboure J, Kamerling P, Knaap WA, Molloy FA, Rowlands PH. Hydrocarbon habitat of the Tertiary Niger Delta. AAPG Bulletin. 1978;62:1–39.
- Nwachukwu SO. Approximate geothermal gradients in Niger Delta sedimentary Basin. The American Association of Petroleum Geology. Bulletin. 1976;60(7):1073–1077.
- Aigbogun C, Olorunsola K. Determination of the Curie point depth of Anambra Basin and using high resolution airborne magnetic data. International Journal of Research and Reviews in Applied Sciences. 2018;34(2):47–54.
- Adedapo JO, Kurowska E, Schoeneich K, Ikpokonte AE. Geothermal gradient of the Niger Delta from recent studies. International Journal of Scientific and Engineering Research. 2013;4(11):39 – 45.
- Akpabio IO, Ejedawe JE, Ebeniro JO, Uko ED. Geothermal gradients in the Niger Delta Basin from continuous temperature logs. Global Journal of Pure and Applied Sciences. 2003;9(2):265–272. DOI: 10.4314/gjpas.v9i2.15967.
- Akpabio I, Ejedawe J, Ebeniro J. Thermal state of the Niger Delta Basin. In: Proceedings of 38th Workshop on geothermal reservoir engineering; 2013 February 11–13; Stanford, California, USA. Stanford: Stanford University. p. 1135–1149.
- Anomohanran O. Determination of geothermal gradient and heat flow distribution in Delta State, Nigeria. International Journal of the Physical Sciences. 2011;6(31):7106 –7111. DOI: 10.5897/IJPS11.713.
- Anomohanran O. Evaluation of Geothermal gradient and heat flow distribution in Delta State, Nigeria. International Journal of Basic and Applied Sciences. 2013;2(1):103–108.
- Odumodu CFR, Mode AW. Present Day Geothermal Regime in parts of the Eastern Niger Delta. Petroleum Technology Development Journal. 2014;4(1):7–26.
- Omokenu EG, Nwosu LI. Spatial variation modeling of geothermal gradient and heat flow in eastern parts of Niger Delta sedimentary basin, Nigeria. Physical Science International Journal. 2017;14(1):1–13. DOI: 10.9734/PSIJ/2017/31581.
- Chukwueke C, Thomas G, Delfraud J. Sedimentary Processes, Eustatism, Subsidence and Heat flow in the distal parts of the Niger Delta. Bulletin des Centres de Recherches Exploration – Production Elf-Aquitaine. 1992;16(1):137–186.
- Etim DU, Ofoegbu CO, Ebeniro JO, Chukwueke CC. Present day heat flow in the Niger Delta, Nigeria. Nigerian Association of Petroleum Explorationist Bulletin. 1996;4.
- Ogagarue DO. Heat flow estimates in the Eastern Niger Delta Basin, Nigeria. Pacific Journal of Science and Technology. 2007; 8(2):261–266.
- Verheijen PJT, Ajakaiye DE. Heat-flow measurements in the Ririwai ring complex, Nigeria. Tectonophysics. 1979;54(1–2): T27–T32. DOI: 10.1016/0040-1951(79)90108-2.
- Nwobodo AN, Ezema PO, Ugwu GZ. Determination of the curie point depth, geothermal gradient and heat flow of Guzabure and its environs, Chad basin, Nigeria using Aeromagnetic data. International Journal of Scientific and Engineering Research. 2018; 9(3):1876 –1890.
- Lawal TO, Nwankwo LI. Evaluation of the depth to the bottom of magnetic sources and heat flow from high resolution aeromagnetic (HRAM) data of part of Nigeria sector of Chad Basin. Arabian Journal of Geosciences. 2017;10(17):378. DOI: 10.1007/ s12517-017-3154-2.
- Anakwuba EK, Chinwuko AI. One Dimensional Spectral Analysis and Curie Depth Isotherm of Eastern Chad Basin, Nigeria. Journal of Natural Sciences Research. 2015;5(19):14 –22.
- Aigbogun C, Olorunsola K. Determination of the Curie point depth of Anambra Basin and its environs using high resolution airborne magnetic data. IJRRAS. 2018;34(2):47–54.
- Bello R, Ofoha CC, Wehiuzo N. Geothermal gradient, Curie point depth and heat flow determination of some parts of lower Benue trough and Anambra basin, Nigeria, Using High Resolution Aeromagnetic Data. Physical Science International Journal. 2017; 15(2):1–11. DOI: 10.9734/PSIJ/2017/34654.
- Lucazeau F, Rolandone F. Heat-flow and subsurface temperature history at the site of Saraya (eastern Senegal). Solid Earth. 2012;3:213–224. DOI: 10.5194/se-3-213-2012.
- Obaje NG. Geology and Mineral Resources of Nigeria. Dordrecht: Springer; 2009. 221 p. DOI: 10.1007/978-3-540-92685-6.
Copyright (c) 2019 Владимир Игнатьевич Зуй
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who are published in this journal agree to the following:
- The authors retain copyright on the work and provide the journal with the right of first publication of the work on condition of license Creative Commons Attribution-NonCommercial. 4.0 International (CC BY-NC 4.0).
- The authors retain the right to enter into certain contractual agreements relating to the non-exclusive distribution of the published version of the work (e.g. post it on the institutional repository, publication in the book), with the reference to its original publication in this journal.
- The authors have the right to post their work on the Internet (e.g. on the institutional store or personal website) prior to and during the review process, conducted by the journal, as this may lead to a productive discussion and a large number of references to this work. (See The Effect of Open Access.)