Estimation of changes in bioclimatic potential values on the territory of Belarus using normalised difference vegetation index (NDVI)

  • Vladimir F. Loginov Institute for Nature Management, National Academy of Sciences of Belarus, 10 F. Skaryny Street, Minsk 220076, Belarus
  • Maxim A. Khitrykau Institute for Nature Management, National Academy of Sciences of Belarus, 10 F. Skaryny Street, Minsk 220076, Belarus https://orcid.org/0000-0003-2982-556X

Abstract

Relations between bioclimatic potential changes and changes in state of crops have been analysed. NDVI (normalised difference vegetation index) and biological productivity parameter by D. I. Shashko (Bk) were used for this purpose. Average values of both parameters have been increasing over the territory of Belarus: since the beginning of 21st century, Bk values increased by 10–15 points and NDVI values – by 0.02–0.03 points. Relations between them depend on the type of vegetation. Current climate changes appeared to be favorable for forests, but average NDVI values on the croplands have been decreasing despite Bk growth. The main reason for this is high correlation between state of vegetation and water resources available (correlation coefficient r between NDVI and precipitation is 0.65–0.80), which, according to TWSA (terrestrial water storage anomaly) measurements, have begun to decrease during the last decade.

Author Biographies

Vladimir F. Loginov, Institute for Nature Management, National Academy of Sciences of Belarus, 10 F. Skaryny Street, Minsk 220076, Belarus

academician of the National Academy of Sciences of Belarus, doctor of science (geography), full professor; chief researcher at the Centre for Climate Research

Maxim A. Khitrykau, Institute for Nature Management, National Academy of Sciences of Belarus, 10 F. Skaryny Street, Minsk 220076, Belarus

junior researcher at the Centre for Climate Research

References

  1. Shashko DI. Agroklimaticheskie resursy SSSR [Agroclimatic resources of USSR]. Leningrad: Gidrometeoizdat; 1985. 249 p. Russian.
  2. Loginov VF, Lysenko SA. Sovremennye izmeneniya global’nogo i regional’nogo klimata [Modern changes of global and regional climate]. Minsk: Belaruskaja navuka; 2019. 315 p. Russian.
  3. Chi Chen, Taejin Park, Xuhui Wang, Shilong Piao, Baodong Xu, Chaturvedi RK, et al. China and India lead in greening of the world through land-use management. Nature Sustainability. 2019;2(2):122–129. DOI: 10.1038/s41893-019-0220-7.
  4. Zaichun Zhu, Shilong Piao, Myneni RB, Mengtian Huang, Zhenzhong Zeng, Canadell JG, et al. Greening of the Earth and its drivers. Nature Climate Change. 2016;6(8):791–795. DOI: 10.1038/nclimate3004.
  5. Duveiller G, Hooker J, Cescatti A. The mark of vegetation change on Earth’s surface energy balance. Nature Communications. 2018;9:679. DOI: 10.1038/s41467-017-02810-8.
  6. Loginov VF, Brovka UA. Seasonal climate changes features of Belarus. In: Karabanov AK, editor. Prirodopol’zovanie. Vypusk 25 [Nature management. Issue 25]. Minsk: Institute of Environmental Management, National Academy of Sciences of Belarus; 2014. p. 16–22. Russian.
  7. Forzieri G, Alkama R, Miralles DG, Cescatti A. Satellites reveal contrasting responses of regional climate to the widespread of greening of Earth. Science. 2017;356(6343):1180–1184. DOI: 10.1126/science.aal1727.
  8. Jia-Wen Zhu, Xiao-Dong Zeng. Influences of the interannual variability of vegetation LAI on surface temperature. Atmospheric and Oceanic Science Letters. 2016;9(4):292–297. DOI: 10.1080/16742834.2016.1189800.
  9. Jiawen Zhu, Xiaodong Zeng. Comprehensive study on the influence of evapotranspiration and albedo on surface temperature related to changes in the leaf area index. Advances in Atmospheric Sciences. 2015;32(7):935–942. DOI: 10.1007/s00376-014-4045-z.
  10. Zhenzhong Zeng, Zaichun Zhu, Xu Lian, Laurent Z X Li, Anping Chen, Xiaogang He, et al. Responses of land evapotranspiration to Earth’s greening in CMIP5 Earth System Models. Environmental Research Letters. 2016;11(10):104006. DOI: 10.1088/1748-9326/11/10/104006.
  11. Swann ALS, Hoffman FM, Koven CD, Randerson JT. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proceedings of the National Academy of Sciences of the United States of America. 2016;113(36):10019–10024. DOI: 10.1073/pnas.1604581113.
  12. Loginov VF, Khitrykau MA. Spatiotemporal changes of bioclimatic potential of the territory of Belarus. Proceedings of the National Academy of Sciences of Belarus. Agrarian series. 2017;1:42–57. Russian.
  13. Khitrykau MA. The characteristics of bioclimatic potential changes in Belarus and neighboring regions of Lithuania and Ukraine in 1977–2015. Nature management. 2018;1:135–149. Russian.
  14. Loginov VF, Lysenko SA, Mel’nik VI. Izmeneniya klimata Belarusi: prichiny, posledstviya, vozmozhnosti regulirovaniya [Climate change in Belarus: causes, consequences, regulatory opportunities]. 2nd edition. Minsk: Entsiklopediks; 2020. 263 p. Russian.
  15. Khitrykau MA. Forecast of changes in the bioclimatic potential of the territory of Belarus. In: Gusakov VG, editor. Molodezh’ v nauke – 2018: agrarnye, gumanitarnye, meditsinskie, fiziko-matematicheskie, fiziko-tekhnicheskie, khimicheskie nauki. Materialy Mezhdunarodnoi konferentsii molodykh uchenykh; 29 oktyabrya – 1 noyabrya 2018 g.; Minsk, Belarus’ [Youth in science – 2018: agrarian, humanitarian, medical, physical and mathematical, physical and technical, chemical sciences. Proceedings of the International conference of young scientists; 2018 October 29 – November 1; Minsk, Belarus]. Minsk: Belaruskaja navuka; 2019. p. 180–191. Russian.
Published
2021-06-08
Keywords: bioclimatic potential, bioproductivity, climate change, NDVI, vegetation
How to Cite
Loginov, V. F., & Khitrykau, M. A. (2021). Estimation of changes in bioclimatic potential values on the territory of Belarus using normalised difference vegetation index (NDVI). Journal of the Belarusian State University. Geography and Geology, 1, 3-12. https://doi.org/10.33581/2521-6740-2021-1-3-12