Properties and applications of G­-orbits polynomial invariants of errors in reverse codes

  • Alexander V. Kushnerov Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus
  • Valery A. Lipnitski Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus; Military Academy of the Republic of Belarus, 220 Niezaliežnasci Avenue, Minsk 220057, Belarus

Abstract

In this paper is described a two­step procedure for polynomial­norm error correction with reverse error correcting  codes. Such codes of length n traditionally are defined by check matrix HR  = (βii)T,   0 ≤ in – 1,  β = α(2m−1)/n  and α is  primitive element of GF(2m). Also in paper you can find a description of error correction algorithm and an example based  on reverse code of length 89.

Author Biographies

Alexander V. Kushnerov, Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

postgraduate student at the department of differential equations and system analyses, faculty of  mechanics and mathematics

Valery A. Lipnitski, Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus; Military Academy of the Republic of Belarus, 220 Niezaliežnasci Avenue, Minsk 220057, Belarus

doctor of science (engineering), full professor; head of the department of higher mathematics, Military Academy of the Republic of Belarus, and professor  at the department of differential equations and systems analysis,  faculty of mechanics and mathematics, Belarusian State University

References

  1. MacWilliams FJ, Sloane N. Teoriya kodov, ispravlyayushchikh oshibki [The Theory of Error­Correcting Codes]. Moscow: Svyaz; 1979. Russian.
  2. Konopel’ko VK, Lipnitskii VA. Teoriya norm sindromov i perestanovochnoe dekodirovanie pomekhoustoichivykh kodov [Theory of syndrome norms and permutation decoding of error­correcting codes]. Moscow: Editorial URSS; 2004. Russian.
  3. Konopel’ko VK, Lipnitskii VA. Normennoe dekodirovanie pomekhoustoichivykh kodov i algebraicheskie uravneniya [Norm decoding of error­correcting codes and algebraic equations]. Minsk: Izdatel’skii tsentr BGU; 2007. Russian.
  4. Lipnitskii VA. Teoriya norm sindromov [Theory of syndrome norms]. Minsk: BGUIR; 2010. Russian.
  5. Lipnitskii VA, Kushnerov AV. [Some properties of reverse error­correcting codes]. In: Tekhnologii informatizatsii i upravleniya. Vypusk 3. V 2 knigakh. Kniga 1. Kadan AM, Svirskii EA, editors. Minsk: RIVSh; 2017. p. 47–54. Russian.
  6. Lipnitskii VA, Kushnerov AV. [Properties and decoding of reverse codes with a code distance of 5]. Vesnik Magilewskaga dzjarzhawnaga wniversitjeta imja A. A. Kuljashova. Seryja V. 2016;2:30 – 44. Russian.
  7. Lipnitskii VA, Sereda EV. [Polynomial invariants of G­orbits of BCH­code errors and their application]. Doklady BGUIR. 2017; 5(107):62– 69. Russian.
  8. Lipnitskii VA. Sovremennaya prikladnaya algebra. Matematicheskie osnovy zashchity informatsii ot pomekh i nesanktsionirovannogo dostupa [Modern applied algebra. Mathematical foundations of information protection from interference and unauthorized access]. Minsk: BGUIR; 2005. 88 p. Russian.
  9. Liddle R, Niederreiter G. Introduction to finite fields and their applications. New York: Cambridge University Press; 1986. Russian edition: Konechnye polya. Moscow: Mir; 1988.
Published
2019-01-19
Keywords: error correcting codes, code minimal distance, reverse codes, BCH codes, norm method of error correction
How to Cite
Kushnerov, A. V., & Lipnitski, V. A. (2019). Properties and applications of G­-orbits polynomial invariants of errors in reverse codes. Journal of the Belarusian State University. Mathematics and Informatics, 3, 21-28. Retrieved from https://journals.bsu.by/index.php/mathematics/article/view/1009