Inclusion of Hajłasz – Sobolev class Mpα(X) into  the space of continuous functions in the critical case

  • Sergey A. Bondarev Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

Abstract

Let (X, d, µ) be a doubling metric measure space with doubling dimension γ, i. e. for any balls B(x, R) and B(x, r), r < R, following inequality holds µ(B(x, R)) ≤ aµ (R/r)γµ(B(x, r)) for some positive constants γ and aµ. Hajłasz – Sobolev space Mpα(X) can be defined upon such general structure. In the Euclidean case Hajłasz – Sobolev space coincides with classical Sobolev space when p > 1, α = 1. In this article we discuss inclusion of functions from Hajłasz – Sobolev space Mpα(X) into the space of continuous functions for p ≤ 1 in the  critical case γ = α p. More precisely, it is shown that any function from Hajłasz – Sobolev class Mpα(X), 0 < p ≤ 1, α > 0, has a continuous representative in case of uniformly perfect space (X, d, µ).

Author Biography

Sergey A. Bondarev, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

postgraduate student at the department of function theory, faculty of mathematics and mechanics

References

  1. Heinonen J. Nonsmooth calculus. Bulletin of the American mathematical society. 2007;44(2):163–232. DOI: 10.1090/s02730979-07-01140-8.
  2. Hajłasz P. Sobolev spaces on an arbitrary metric space. Potential Analysis. 1996;5(4):403–415. DOI: 10.1007/BF00275475.
  3. Yang D. New characterization of Hajłasz – Sobolev spaces on metric spaces. Science in China. Series A. Mathematics. 2003;46(5):675–689. DOI: 10.1360/02ys0343.
  4. Zhou X. Sobolev functions in the critical case are uniformly continuous in s-Ahlfors regular metric spaces when s ≤ 1. Proceedings of the American Mathematical Society. 2017;145:267–272. DOI: 10.1090/proc/13220.
  5. Bondarev SA, Krotov VG. Fine properties of functions from Hajłasz – Sobolev classes Mpα, p > 0. I. Lebesgue points. Journal of Contemporary Mathematical Analysis. 2016;51(6):282–295. DOI: 10.3103/S1068362316060029.
  6. Bondarev SA. Lebesgue points of functions from generalized Sobolev classes Mpα(X) in the critical case. Journal of the Belarusian State University. Mathematics and Informatics. 2018;3:4–11. Russian.
  7. Górka P, Słabuszewski A. A discontinuous Sobolev function exists. Proceedings of the American Mathematical Society. 2019;147(2):637–639. DOI: 10.1090/proc/14164.
  8. Stein E. Singular integrals and differentiability properties of functions. Princeton: Princeton University Press; 1970. 287 p. Russian edition: Stein E. Singulyarnye integraly i differentsial’nye svoistva funktsii. Burenkov VI, editor. Moscow: Mir; 1973. 342 p.
  9. Heinonen J. Lectures on analysis on metric spaces. New York: Springer – Verlag; 2001. 141 p. (Universitext). DOI: 10.1007/9781-4613-0131-8.
Published
2020-03-31
Keywords: analysis on metric measure spaces, Sobolev spaces
How to Cite
Bondarev, S. A. (2020). Inclusion of Hajłasz – Sobolev class Mpα(X) into  the space of continuous functions in the critical case. Journal of the Belarusian State University. Mathematics and Informatics, 1, 6-12. https://doi.org/10.33581/2520-6508-2020-1-6-12