Finite groups with given systems of generalised σ-permutable subgroups
Abstract
Let σ = {σi|i ∈ I } be a partition of the set of all primes ℙ and G be a finite group. A set ℋ of subgroups of G is said to be a complete Hall σ-set of G if every member ≠1 of ℋ is a Hall σi-subgroup of G for some i ∈ I and ℋ contains exactly one Hall σi-subgroup of G for every i such that σi ⌒ π(G) ≠ ∅. A group is said to be σ-primary if it is a finite σi-group for some i. A subgroup A of G is said to be: σ-permutable in G if G possesses a complete Hall σ-set ℋ such that AH x = H xA for all H ∈ ℋ and all x ∈ G; σ-subnormal in G if there is a subgroup chain A = A0 ≤ A1 ≤ … ≤ At = G such that either Ai − 1 ⊴ Ai or Ai /(Ai − 1)Ai is σ-primary for all i = 1, …, t; 𝔄-normal in G if every chief factor of G between AG and AG is cyclic. We say that a subgroup H of G is: (i) partially σ-permutable in G if there are a 𝔄-normal subgroup A and a σ-permutable subgroup B of G such that H = < A, B >; (ii) (𝔄, σ)-embedded in G if there are a partially σ-permutable subgroup S and a σ-subnormal subgroup T of G such that G = HT and H ∩ T ≤ S ≤ H. We study G assuming that some subgroups of G are partially σ-permutable or (𝔄, σ)-embedded in G. Some known results are generalised.
References
- Hu B, Huang J, Skiba AN. Finite groups with only F-normal and F-abnormal subgroups Journal of Group Theory. 2019;22(5):915–926. DOI: 10.1515/jgth-2018-0199.
- Shemetkov LA. Formatsii konechnykh grupp [Finite group formations]. Moscow: Nauka; 1978. 272 p. Russian.
- Skiba AN. On σ-subnormal and σ-permutable subgroups of finite groups. Journal of Algebra. 2015;436:1–16. DOI: 10.1016/j.jalgebra.2015.04.010.
- Skiba AN. Some characterizations of finite σ-soluble PσT-groups. Journal of Algebra. 2018;495:114–129. DOI: 10.1016/j.jalgebra.2017.11.009.
- Skiba AN. On sublattices of the subgroup lattice defined by formation Fitting sets. Journal of Algebra. 2020;550:69–85. DOI: 10.1016/j.jalgebra.2019.12.013.
- Skiba AN. A generalization of a Hall theorem. Journal of Algebra and Its Applications. 2016;15(5):1650085. DOI: 10.1142/S0219498816500857.
- Skiba AN. On some results in the theory of finite partially soluble groups. Communications in Mathematics and Statistics. 2016;4(3):281–309. DOI: 10.1007/s40304-016-0088-z.
- Ballester-Bolinches A, Beidleman JC, Heineken H. Groups in which Sylow subgroups and subnormal subgroups permute. Illinois Journal of Mathematics. 2003;47(1–2):63–69. DOI: 10.1215/ijm/1258488138.
- Ballester-Bolinches A, Esteban-Romero R, Asaad M. Products of finite groups. Berlin: De Gruyter; 2010. 334 p. (De Gruyter Expositions in Mathematics; volume 53). DOI: 10.1515/9783110220612.
- Yi X, Skiba AN. Some new characterizations of PST-groups. Journal of Algebra. 2014;399:39–54. DOI: 10.1016/j.jalgebra.2013.10.001.
- Beidleman JC, Skiba AN. On τσ-quasinormal subgroups of finite groups. Journal of Group Theory. 2017;20(5):955–969. DOI: 10.1515/jgth-2017-0016.
- Al-Sharo KA, Skiba AN. On finite groups with σ-subnormal Schmidt subgroups. Communications in Algebra. 2017;45(10):4158–4165. DOI: 10.1080/00927872.2016.1236938.
- Guo W, Skiba AN. Groups with maximal subgroups of Sylow subgroups σ-permutably embedded. Journal of Group Theory. 2017;20(1):169–183. DOI: 10.1515/jgth-2016-0032.
- Huang J, Hu B, Wu X. Finite groups all of whose subgroups are σ-subnormal or σ-abnormal. Communications in Algebra. 2017;45(10):4542–4549. DOI: 10.1080/00927872.2016.1270956.
- Hu B, Huang J, Skiba AN. Groups with only σ-semipermutable and σ-abnormal subgroups. Acta Mathematica Hungarica. 2017;153(1):236–248. DOI: 10.1007/s10474-017-0743-1.
- Bin Hu, Jianhong Huang. On finite groups with generalized σ-subnormal Schmidt subgroups. Communications in Algebra. 2018;46(7):3127–3134. DOI: 10.1080/00927872.2017.1404091.
- Guo W, Zhang C, Skiba AN, Sinitsa DA. On Hσ-permutable embedded subgroups of finite groups. Rendiconti del Seminario Matematico della Università di Padova. 2018;139:143–158. DOI: 10.4171/RSMUP/139-4.
- Hu B, Huang J, Skiba AN. Finite groups with given systems of σ-semipermutable subgroups. Journal of Algebra and Its Applications. 2017;17(2):1850031. DOI: 10.1142/S0219498818500317.
- Guo W, Skiba AN. Finite groups whose n-maximal subgroups are σ-subnormal. Science China Mathematics. 2019;62(7):1355–1372. DOI: 10.1007/s11425-016-9211-9.
- Kovaleva VA. A criterion for a finite group to be σ-soluble. Communications in Algebra. 2018;46(12):5410–5415. DOI: 10.1080/00927872.2018.1468907.
- Hu B, Huang J, Skiba A. On σ-quasinormal subgroups of finite groups. Bulletin of the Australian Mathematical Society. 2019;99(3):413–420. DOI: 10.1017/S0004972718001132.
- Skiba AN. On some classes of sublattices of the subgroup lattice. Journal of the Belarusian State University. Mathematics and Informatics. 2019;3:35–47. DOI: 10.33581/2520-6508-2019-3-35-47.
- Heliel AE-R, Al-Shomrani M, Ballester-Bolinches A. On the σ-length of maximal subgroups of finite σ-soluble groups. Mathematics. 2020;8(12):2165. DOI: 10.3390/math8122165.
- Al-Shomrani MM, Heliel AA, Ballester-Bolinches A. On σ-subnormal closure. Communications in Algebra. 2020;48(8):3624–3627. DOI: 10.1080/00927872.2020.1742348.
- Ballester-Bolinches A, Kamornikov SF, Pedraza-Aguilera MC, Perez-Calabuig V. On σ-subnormality criteria in finite σ-soluble groups. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A: Matemáticas. 2020;114(2):94. DOI: 10.1007/s13398-020-00824-4.
- Ballester-Bolinches A, Kamornikov SF, Pedraza-Aguilera MC, Yi X. On σ-subnormal subgroups of factorised finite groups. Journal of Algebra. 2020;559:195–202. DOI: 10.1016/j.jalgebra.2020.05.002.
- Kamornikov SF, Tyutyanov VN. On σ-subnormal subgroups of finite groups. Siberian Mathematical Journal. 2020;61(2):266–270. DOI: 10.1134/S0037446620020093.
- Kamornikov SF, Tyutyanov VN. On σ-subnormal subgroups of finite 3′-groups. Ukrainian Mathematical Journal. 2020;72(6):935–941. DOI: 10.1007/s11253-020-01833-7.
- Yi X, Kamornikov SF. Finite groups with σ-subnormal Schmidt subgroups. Journal of Algebra. 2020;560:181–191. DOI:10.1016/j.jalgebra.2020.05.021.
- Chi Zhang, Zhenfeng Wu, Wenbin Guo. On weakly σ-permutable subgroups of finite groups. Publicationes Mathematicae Debrecen. 2017;91(3–4):489–502.
- Hu B, Huang J, Skiba AN. On weakly σ-quasinormal subgroups of finite groups. Publicationes Mathematicae Debrecen. 2018;92(1–2):12.
- Skiba AN. On weakly s-permutable subgroups of finite groups. Journal of Algebra. 2007;315(1):192–209. DOI: 10.1016/j.jalgebra.2007.04.025.
- Schmidt R. Subgroup lattices of groups. Berlin: Walter de Gruyter; 1994 (De Gruyter Expositions in Mathematics; volume 14). 572 p. DOI: 10.1515/9783110868647.
- Xianbiao Wei. On weakly m-σ-permutable subgroups of finite groups. Communications in Algebra. 2019;47(3):945–956. DOI: 10.1080/00927872.2018.1498874.
- Yanming Wang. c-Normality of groups and its properties. Journal of Algebra. 1996;180(3):954–965. DOI: 10.1006/jabr.1996.0103.
- Agrawal RK. Generalized center and hypercenter of a finite group. Proceedings of the American Mathematical Society. 1976;58(1):13–21. DOI: 10.1090/S0002-9939-1976-0409651-8.
- Weinstein M. Between nilpotent and solvable. Passaic: Polygonal; 1982. 231 p.
- Schmidt R. Endliche Gruppen mit vielen modularen Untergruppen. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg. 1969;34(12):115–125. DOI: 10.1007/BF02992891.
- Guo W. Structure theory for canonical classes of finite groups. Heidelberg: Springer; 2015. 359 p.
- Zakrevskaya VS. Finite groups with partially σ-subnormal subgroups in short maximal chains. Advances in Group Theory and Application. 2020;12:91–106. DOI: 10.32037/agta-2021-014.
- Doerk K, Hawkes TO. Finite soluble groups. Berlin: De Gruyter; 1992. 891 p. (De Gruyter Expositions in Mathematics; volume 4). DOI: 10.1515/9783110870138.
- Huppert B. Endliche Gruppen I. Berlin: Springer; 1967. 796 p. (Grundlehren der mathematischen Wissenschaften; volume 134). DOI: 10.1007/978-3-642-64981-3.
- Ballester-Bolinches A, Ezquerro LM. Classes of finite groups. Dordrecht: Springer; 2006. 381 p. DOI: 10.1007/1-4020-4719-3.
Copyright (c) 2021 Journal of the Belarusian State University. Mathematics and Informatics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who are published in this journal agree to the following:
- The authors retain copyright on the work and provide the journal with the right of first publication of the work on condition of license Creative Commons Attribution-NonCommercial. 4.0 International (CC BY-NC 4.0).
- The authors retain the right to enter into certain contractual agreements relating to the non-exclusive distribution of the published version of the work (e.g. post it on the institutional repository, publication in the book), with the reference to its original publication in this journal.
- The authors have the right to post their work on the Internet (e.g. on the institutional store or personal website) prior to and during the review process, conducted by the journal, as this may lead to a productive discussion and a large number of references to this work. (See The Effect of Open Access.)