Contribution of Jonas Kubilius to the metric theory of Diophantine approximation of dependent variables

  • Victor V. Beresnevich James College, University of York, Campus West, YO10 5DD, York, United Kingdom
  • Vasily I. Bernik Institute of Mathematics, National Academy of Sciences of Belarus, 11 Surhanava Street, Minsk 220072, Belarus
  • Friedrich Götze Bielefeld University, 25 Universitätsstraße, Bielefeld D-33615, Germany
  • Elena V. Zasimovich Institute of Mathematics, National Academy of Sciences of Belarus, 11 Surhanava Street, Minsk 220072, Belarus
  • Nikolai I. Kalosha Institute of Mathematics, National Academy of Sciences of Belarus, 11 Surhanava Street, Minsk 220072, Belarus https://orcid.org/0000-0001-5266-9900

Abstract

The article is devoted to the latest results in metric theory of Diophantine approximation. One of the first major result in area of number theory was a theorem by academician Jonas Kubilius. This paper is dedicated to centenary of his birth. Over the last 70 years, the area of Diophantine approximation yielded a number of significant results by great mathematicians, including Fields prize winners Alan Baker and Grigori Margulis. In 1964 academician of the Academy of Sciences of BSSR Vladimir Sprindžuk, who was a pupil of academician J. Kubilius, solved the well-known Mahler’s conjecture on the measure of the set of S-numbers under Mahler’s classification, thus becoming the founder of the Belarusian academic school of number theory in 1962.

Author Biographies

Victor V. Beresnevich, James College, University of York, Campus West, YO10 5DD, York, United Kingdom

doctor of science (physics and mathematics), full professor; professor

Vasily I. Bernik, Institute of Mathematics, National Academy of Sciences of Belarus, 11 Surhanava Street, Minsk 220072, Belarus

doctor of science (physics and mathematics), full professor; chief researcher at the department of number theory

Friedrich Götze, Bielefeld University, 25 Universitätsstraße, Bielefeld D-33615, Germany

doctor of science (physics and mathematics), full professor; professor

Elena V. Zasimovich, Institute of Mathematics, National Academy of Sciences of Belarus, 11 Surhanava Street, Minsk 220072, Belarus

postgraduate student at the department of number theory

Nikolai I. Kalosha, Institute of Mathematics, National Academy of Sciences of Belarus, 11 Surhanava Street, Minsk 220072, Belarus

PhD (physics and mathematics); senior researcher at the department of number theory

References

  1. Kubilius JP. [On application of Academician Vinogradov’s method to solving a certain problem in metric number theory]. Doklady Akademii nauk SSSR. 1949;67:783–786. Russian.
  2. Kubilius JP. [On a metrical problem in Diophantine approximation theory]. Doklady Akademii nauk Litovskoi SSR. 1959;2:3–7. Russian.
  3. Sprindžuk VG. [Proof of Mahler’s conjecture on the measure of the set of S-numbers]. Izvestiya Akademii nauk SSSR. Seriya matematicheskaya. 1965;29(2):379–436. Russian.
  4. Sprindžuk VG. Problema Malera v metricheskoi teorii chisel [Mahler’s problem in metric number theory]. Minsk: Nauka i tekhnika; 1967. 181 p. Russian.
  5. Sprindžuk VG. [Advances and problems in the theory of Diophantine approximation]. Uspekhi matematicheskikh nauk. 1980;35(4):3–68. Russian.
  6. Borel MÈ. Les probabilités dénombrables et leurs applications arithmétiques. Rendiconti del Circolo Matematico di Palermo (1884–1940). 1909;27:247–271. DOI: 10.1007/bf03019651.
  7. Khintchine A. Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der diophantischen Approximationen. Mathematische Annalen. 1924;92:115–125.
  8. Groshev AV. [Theorem on a system of linear forms]. Doklady Akademii nauk SSSR. 1938;19:151–152. Russian.
  9. Harman G. Metric number theory. Oxford: Clarendon Press; 1998. 297 p. (London Mathematical Society monographs; new series 18).
  10. Cassels JWS. An introduction to Diophantine approximation. 1st edition. Cambridge: Cambridge University Press; 1957. 166 p. (Cambridge tracts in mathematics and mathematical physics; No. 45).
  11. Sprindžuk VG. Mahler’s problem in metric number theory. Volkmann B, translator. Providence: American Mathematical Society; 1969. 192 p. (Translations of mathematical monographs; volume 25).
  12. Khintchine A. Zwei Bemerkungen zu einer Arbeit des Herrn Perron. Mathematische Zeitschrift. 1925;22:274–284. DOI: 10.1007/bf01479606.
  13. Mahler K. Über das Maß der Menge aller S-Zahlen. Mathematische Annalen. 1932;106:131–139.
  14. Schmidt WM. Bounds for certain sums; a remark on a conjecture of Mahler. Transactions of the American Mathematical Society. 1961;101(2):200–210. DOI: 10.1090/s0002-9947-1961-0132036-2.
  15. Bugeaud Y. Approximation by algebraic numbers. Cambridge: Cambridge University Press; 2004. 290 p. (Cambridge tracts in mathematics; volume 160). DOI: 10.1017/CBO9780511542886.
  16. Koksma JF. Über die Mahlersche Klasseneinteilung der transzendenten Zahlen und die Approximation komplexer Zahlen durch algebraische Zahlen. Monatshefte für Mathematik. 1939;48(1):176–189. DOI: 10.1007/bf01696176.
  17. LeVeque WJ. Note on S-numbers. Proceedings of the American Mathematical Society. 1953;4:189–190. DOI: 10.1090/s0002-9939-1953-0054659-2.
  18. Kasch F, Volkmann B. Zur Mahlerschen Vermutung über S-Zahlen. Mathematische Annalen. 1958;136(5):442–453. DOI: 10.1007/BF01347794.
  19. Schmidt WM. Metrische Sätze über simultane Approximation abhängiger Größen. Monatshefte für Mathematik. 1964;68(2):154–166. DOI: 10.1007/bf01307118.
  20. Volkmann B. The real cubic case of Mahler’s conjecture. Mathematika. 1961;8(1):55–57. DOI: 10.1112/s0025579300002126.
  21. Davenport H. A note on binary cubic forms. Mathematika. 1961;8(1):58–62. DOI: 10.1112/s0025579300002138.
  22. Bernik V, Götze F, Gusakova A. On points with algebraically conjugate coordinates close to smooth curves. Zapiski nauchnykh seminarov POMI. 2016;448:14–47.
  23. Cassels JWS. Some metrical theorems in Diophantine approximation: v. on a conjecture of Mahler. Mathematical Proceedings of the Cambridge Philosophical Society. 1951;47(1):18–21. DOI: 10.1017/s0305004100026323.
  24. BakerA, Schmidt WM. Diophantine approximation and Hausdorff dimension. Proceedings of the London Mathematical Society. 1970;s3-21(1):1–11. DOI: 10.1112/plms/s3-21.1.1.
  25. Bernik V. [On the exact order of approximation of zero by values of integer polynomials]. Acta Arithmetica. 1989–1990;53(1):17–28. Russian.
  26. Beresnevich V. On approximation of real numbers by real algebraic numbers. Acta Arithmetica. 1999;90(2):97–112. DOI: 10.4064/aa-90-2-97-112.
  27. Beresnevich V. On a theorem of V. Bernik in the metric theory of Diophantine approximation. Acta Arithmetica. 2005;117(1):71–80. DOI: 10.4064/aa117-1-4.
  28. Bernik VI, Vasilyev DV. [A Khintchine-type theorem for integer polynomials with a complex variable]. Trudy Instituta matematiki NAN Belarusi. 1999;3:10–20. Russian.
  29. Beresnevich VV, Bernik VI, Kovalevskaya EI. On approximation of p-adic numbers by p-adic algebraic numbers. Journal of Number Theory. 2005;111(1):33–56. DOI: 10.1016/j.jnt.2004.09.007.
  30. MohammadiA, GolsefidyAS. S-arithmetic Khintchine-type theorem. Geometric and Functional Analysis. 2009;19(4):1147–1170. DOI: 10.1007/s00039-009-0029-z.
  31. Adiceam F, Beresnevich V, Levesley J, Velani S, Zorin E. Diophantine approximation and applications in interference alignment. Advances in Mathematics. 2016;302:231–279. DOI: 10.1016/j.aim.2016.07.002.
  32. Bernik VI, Shamukova NV. [Approximation of real numbers by integer algebraic numbers, and the Khintchineʼs theorem]. Doklady of the National Academy of Sciences of Belarus. 2006;50(3):30–32. Russian.
  33. Bernik VI, Dodson MM. Metric Diophantine approximation on manifolds. Cambridge: Cambridge University Press; 1999. 172 p. (Cambridge tracts in mathematics; volume 137). DOI: 10.1017/CBO9780511565991.
  34. Beresnevich V, Bernik V. On a metrical theorem of W. Schmidt. Acta Arithmetica. 1996;75(3):219–233. DOI: 10.4064/aa-75-3-219-233.
  35. Kleinbock DY, Margulis GA. Flows on homogeneous spaces and Diophantine approximation on manifolds. Annals of Mathematics. 1998;148(1):339–360. DOI: 10.2307/120997.
  36. Beresnevich V. A Groshev type theorem for convergence on manifolds. Acta Mathematica Hungarica. 2002;94(1–2):99–130. DOI: 10.1023/A:1015662722298.
  37. Bernik V, Kleinbock D, Margulis G. Khintchine-type theorems on manifolds: the convergence case for standard and multiplicative versions. International Mathematics Research Notices. 2001;2001(9):453–486. DOI: 10.1155/S1073792801000241.
  38. Beresnevich VV, Bernik VI, Kleinbock DYa, Margulis GA. Metric Diophantine approximation: the Khintchine – Groshev theorem for non-degenerate manifolds. Moscow Mathematical Journal. 2002;2(2):203–225. DOI: 10.17323/1609-4514-2002-2-2-203-225.
  39. Baker A. On a theorem of Sprindžuk. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 1966;292(1428):92–104. DOI: 10.1098/rspa.1966.0121.
  40. Koksma JF. Diophantische approximationen. Berlin: Springer; 1974. 172 p. (Ergebnisse der Mathematik und ihrer Grenzgebiete; volume 4). DOI: 10.1007/978-3-642-65618-7.
  41. Allen D, Beresnevich V. A mass transference principle for systems of linear forms and its applications. Compositio Mathematica. 2018;154(5):1014–1047. DOI: 10.1112/s0010437x18007121.
  42. Bernik VI, Vasilyev DV, Zasimovich EV. Diophantine approximation with the constant right-hand side of inequalities on short intervals. Doklady of the National Academy of Sciences of Belarus. 2021;65(4):397–403. Russian. DOI: 10.29235/1561-8323-2021-65-4-397-403.
  43. Jarnik V. Diophantische approximationen und Hausdorffsches mass. Matematicheskii sbornik’. 1929;36(3–4):371–382.
  44. Besicovitch AS. Sets of fractional dimensions (IV): on rational approximation to real numbers. Journal of the London Mathematical Society. 1934;s1-9(2):126–131. DOI: 10.1112/jlms/s1-9.2.126.
  45. Bernik VI. [Application of the Hausdorff dimension in the theory of Diophantine approximation]. Acta Arithmetica. 1983;42:219–253. Russian. DOI: 10.4064/aa-42-3-219-253.
  46. Melnichuk YuV. [Diophantine approximation on a circle and the Hausdorff dimension]. Matematicheskie zametki. 1979;26(3):347–354. Russian.
  47. Bernik VI, Morotskaya IL. [Diophantine approximation in p and the Hausdorff dimension]. Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series. 1986;3:3–9. Russian.
  48. Bernik VI, Kalosha NI. Approximation of zero by values of integer polynomials in the space  ×  × p. Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series. 2004;1:121–123. Russian.
  49. Budarina NV. [Metric theory of simultaneous Diophantine approximation in ¬ k lpm × × ]. Chebyshevskii sbornik. Posvyashchaetsya 65-i godovshchine so dnya rozhdeniya professora Sergeya Mikhailovicha Voronina. 2011;12(1):17–50. Russian.
  50. Badziahin D, Schleischitz J. An improved bound in Wirsing’s problem. Transactions of the American Mathematical Society. 2021;374:1847–1861. DOI: 10.1090/tran/8245.
  51. Bernik VI, Tishchenko KI. [Integral polynomials with an overfall of the coefficient values and Wirsing’s theorem]. Doklady of the National Academy of Belarus. 1993;37(5):9–11. Russian.
  52. Beresnevich V, Dickinson D, Velani S. Diophantine approximation on planar curves and the distribution of rational points (with an Appendix by R. C. Vaughan). Annals of Mathematics. 2007;166(2):367–426. DOI: 10.4007/annals.2007.166.367.
  53. Dickinson H, Dodson MM. Extremal manifolds and Hausdorff dimension. Duke Mathematical Journal. 2000;101(2):271–281. DOI: 10.1215/S0012-7094-00-10126-3.
  54. Rynne BP. Simultaneous Diophantine approximation on manifolds and Hausdorff dimension. Journal of Number Theory. 2003;98(1):1–9. DOI: 10.1016/s0022-314x(02)00035-5.
  55. Kudin AS, Lunevich AV. [An analogue of Khintchine’s theorem in the case of divergence in the fields of real, complex and p-adic numbers]. Trudy Instituta matematiki. 2015;23(1):76–83. Russian.
  56. Beresnevich V, Zorin E. Explicit bounds for rational points near planar curves and metric Diophantine approximation. Advances in Mathematics. 2010;225(6):3064–3087. DOI: 10.1016/j.aim.2010.05.021.
  57. Beresnevich V, Vaughan RC, Velani S, Zorin E. Diophantine approximation on manifolds and the distribution of rational points: contributions to the convergence theory. International Mathematics Research Notices. 2017;2017(10):2885–2908. DOI: 10.1093/imrn/rnv389.
  58. Huang J-J. The density of rational points near hypersurfaces. Duke Mathematical Journal. 2020;169(11):2045–2077. DOI: 10.1215/00127094-2020-0004.
  59. Simmons D. Some manifolds of Khinchin type for convergence. Journal de Théorie des Nombres de Bordeaux. 2018;30(1):175–193. DOI: 10.5802/jtnb.1021.
  60. Beresnevich V, Velani S. An inhomogeneous transference principle and Diophantine approximation. Proceedings of the London Mathematical Society. 2010;101(3):821–851. DOI: 10.1112/plms/pdq002.
  61. Yavid KYu. [An estimate for the Hausdorff dimension of sets of singular vectors]. Doklady Akademii nauk BSSR. 1987;31(9):777–780. Russian.
  62. Beresnevich V, Levesley J, Ward B. A lower bound for the Hausdorff dimension of the set of weighted simultaneously approximable points over manifolds. International Journal of Number Theory. 2021;17(8):1795–1814. DOI: 10.1142/S1793042121500639.
  63. Bernik VI. Applications of measure theory and Hausdorff dimension to the theory of Diophantine approximation. New advances in transcendence theory. 1988:25–36. DOI: 10.1017/CBO9780511897184.003.
  64. Bernik VI. [Application of Hausdorff dimension in the theory of Diophantine approximations]. Acta Arithmetica. 1983;42:219–253. Russian.
  65. Beresnevich V, Lee L, Vaughan RC, Velani S. Diophantine approximation on manifolds and lower bounds for Hausdorff dimension. Mathematika. 2017;63(3):762–779. DOI: 10.1112/s0025579317000171.
  66. Bernik VI, Pereverseva NA. The method of trigonometric sums and lower estimates of Hausdorff dimension. Analytic and Probabilistic Methods in Number Theory. 1992;2:75–81. DOI: 10.1515/9783112314234-011.
  67. Bugeaud Y. Approximation by algebraic integers and Hausdorff dimension. Journal of the London Mathematical Society. 2002;65(3):547–559. DOI: 10.1112/S0024610702003137.
  68. Beresnevich VV, Velani SL. A note on simultaneous Diophantine approximation on planar curves. Mathematische Annalen. 2007;337(4):769–796. DOI: 10.1007/s00208-006-0055-1.
  69. Beresnevich VV. Application of the consept of regular systems in the Metric theory of numbers. Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series. 2000;1:35–39. Russian.
  70. Beresnevich VV. [On construction of regular systems of points with real, complex and p-adic algebraic coordinates]. Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series. 2003;1:22–27. Russian.
  71. Kovalevskaya EI, Bernik V. Simultaneous inhomogeneous Diophantine approximation of the values of integral polynomials with respect to Archimedean and non-Archimedean valuations. Acta Mathematica Universitatis Ostraviensis. 2006;14(1):37–42.
  72. Bernik VI, Marozava IM. Baker’s conjecture and regular sets of algebraic numbers with a restriction on the value of the derivative. Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series. 1996;3:109–113. Belarusian.
  73. Kleinbock D, Tomanov G. Flows on S-arithmetic homogeneous spaces and applications to metric Diophantine approximation. Commentarii Mathematici Helvetici. 2007;82(3):519–581. DOI: 10.4171/cmh/102.
  74. Bernik VI, Sakovich NV. Regular systems of complex algebraic numbers. Doklady Akademii nauk Belarusi. 1994;38(5):10–13. Russian.
  75. Beresnevich VV, Kovalevskaya EI. [On Diophantine approximation of dependent variables in the p-adic case]. Matematicheskie zametki. 2003;25(1):22–37. Russian. DOI: 10.4213/mzm165.
  76. Bernik VI. [A metric theorem on the simultaneous approximation of a zero by the values of integral polynomials]. Izvestiya Akademii nauk SSSR. Seriya matematicheskaya. 1980;44(1):24–45. Russian.
  77. Želudevič F. Simultane diophantische Approximationen abhängiger Größen in mehreren Metriken. Acta Arithmetica. 1986;46(3):285–296. DOI: 10.4064/aa-46-3-285-296.
  78. Bernik V, Budarina N, Dickinson D. A divergent Khintchine theorem in the real, complex, and p-adic fields. Lithuanian Mathematical Journal. 2008;48(2):158–173. DOI: 10.1007/s10986-008-9005-9.
  79. Budarina N, Dickinson D, Bernik V. Simultaneous Diophantine approximation in the real, complex and p-adic fields. Mathematical Proceedings of the Cambridge Philosophical Society. 2010;149(2):193–216. DOI: 10.1017/s0305004110000162.
  80. Dombrovskii IR. [Simultaneous approximation of real numbers by algebraic numbers of bounded degree]. Doklady Akademii nauk BSSR. 1989;33(3):205–208. Russian.
  81. Beresnevich V. Rational points near manifolds and metric Diophantine approximation. Annals of Mathematics. 2012;175(1):187–235. DOI: 10.4007/annals.2012.175.1.5.
  82. Beresnevich VV, Velani SL. Simultaneous inhomogeneous Diophantine approximation on manifolds. Journal of Mathematical Sciences. 2012;180(5):531–541. DOI: 10.1007/s10958-012-0651-4.
  83. Budarina N, Dickinson D, Levesley J. Simultaneous Diophantine approximation on polynomial curves. Mathematika. 2010;56(1):77–85. DOI: 10.1112/s0025579309000382.
  84. Budarina N. On a problem of Bernik, Kleinbock and Margulis. Glasgow Mathematical Journal. 2011;53(3):669–681. DOI: 10.1017/s0017089511000255.
  85. Budarina N, Dickinson D. Simultaneous Diophantine approximation in two metrics and the distance between conjugate algebraic numbers in  × p. Indagationes Mathematicae. 2012;23(1–2):32–41. DOI: 10.1016/j.indag.2011.09.012.
  86. Bernik VI, Borbat VN. [Joint approximation of zero by values of integer-valued polynomials]. Trudy Matematicheskogo instituta imeni V. A. Steklova. 1997;218:58–73. Russian.
  87. Bernik VI, Budarina N, O’Donnell H. On regular systems of real algebraic numbers of third degree in short intervals. Sovremennye problemy matematiki. 2013;17:61–75. DOI: 10.4213/spm43.
  88. Bugeaud Y, Mignotte M. Polynȏmes à coefficients entiers prenant des valeurs positives aux points réels. Bulletin mathématique de la Société des Sciences Mathématiques de Roumanie. 2010;53(3):219–224.
  89. Bernik V, Götze F. A new connection between metric theory of Diophantine approximations and distribution of algebraic numbers. Contemporary Mathematics. 2015;631:33–45. DOI: 10.1090/conm/631/12594.
  90. Budarina NV. [Simultaneous Diophantine approximation with non-monotonic right-hand sides]. Doklady Akademii nauk. 2011;437(4):441–443. Russian.
  91. Bernik V, Mc Guire S. How small can polynomials be in an interval of given length? Glasgow Mathematical Journal. 2020;62(2):261–280. DOI: 10.1017/S0017089519000077.
  92. Bugeaud Y, Mignotte M. Polynomial root separation. International Journal of Number Theory. 2010;6(3):587–602. DOI: 10.1142/s1793042110003083.
  93. Beresnevich V, Bernik V, Götze F. The distribution of close conjugate algebraic numbers. Compositio Mathematica. 2010;146(5):1165–1179. DOI: 10.1112/S0010437X10004860.
  94. Bernik V, Budarina N, O’Donnell H. Discriminants of polynomials in the Archimedean and non-Archimedean metrics. Acta Mathematica Hungarica. 2018;154(2):265–278. DOI: https://doi.org/10.1007/s10474-018-0794-y.
  95. Huxley MN. The rational points close to a curve. Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Série 4. 1994;21(3):357–375.
  96. Koleda DV. On the asymptotic distribution of algebraic numbers with growing naive height. Chebyshevskii sbornik. 2015;16(1):191–204. Russian. DOI: 10.22405/2226-8383-2015-16-1-191-204.
  97. Götze F, Koleda D, Zaporozhets D. Joint distribution of conjugate algebraic numbers: a random polynomial approach. Advances in Mathematics. 2020;359:106849. DOI: 10.1016/j.aim.2019.106849.
  98. Lebed VV, Bernik VI. Algebraic points on a plane. Fundamental’naya i prikladnaya matematika. 2005;11(6):73–80. Russian.
  99. Koleda DU. Distribution of the real algebraic numbers of second degree. Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series. 2013;3:54–63. Russian.
  100. Koleda D. On the density function of the distribution of real algebraic numbers. Journal de Théorie des Nombres de Bordeaux. 2017;29(1):179–200. DOI: 10.5802/jtnb.975.
  101. Bernik VI, Götze F, Kalosha NI. Counting algebraic numbers in short intervals with rational points. Journal of the Belarusian State University. Mathematics and Informatics. 2019;1:4–11. Russian. DOI: 10.33581/2520-6508-2019-1-4-11.
  102. Budarina NV, Dickinson D, Bernik VI. Lower bounds for the number of vectors with algebraic coordinates near smooth surfaces. Doklady of the National Academy of Sciences of Belarus. 2020;64(1):7–12. Russian. DOI: 10.29235/1561-8323-2020-64-1-7-12.
  103. Bernik VI, Götze F. Distribution of real algebraic numbers of arbitrary degree in short intervals. Izvestiya: Mathematics. 2015;79(1):18–39. DOI: 10.1070/im2015v079n01abeh002732.
  104. Budarina N, Dickinson D. Diophantine approximation on non-degenerate curves with non-monotonic error function. Bulletin of the London Mathematical Society. 2009;41(1):137–146. DOI: 10.1112/blms/bdn116.
  105. Budarina N. Diophantine approximation on the curves with non-monotonic error function in the p-adic case. Chebyshevskii sbornik. 2010;11(1):74–80.
  106. Badziahin D, Beresnevich V, Velani S. Inhomogeneous theory of dual Diophantine approximation on manifolds. Advances in Mathematics. 2013;232(1):1–35. DOI: 10.1016/j.aim.2012.09.022.
  107. Badziahin D. Inhomogeneous Diophantine approximation on curves and Hausdorff dimension. Advances in Mathematics. 2010;223(1):329–351. DOI: 10.1016/j.aim.2009.08.005.
  108. Bernik V, Dickinson H, Yuan J. Inhomogeneous Diophantine approximation on polynomials in p. Acta Arithmetica. 1999;90(1):37–48. DOI: 10.4064/aa-90-1-37-48.
  109. Beresnevich V, Ganguly A, Ghosh A, Velani S. Inhomogeneous dual Diophantine approximation on affine subspaces. International Mathematics Research Notices. 2020;12:3582–3613. DOI: 10.1093/imrn/rny124.
  110. Beresnevich VV, Vaughan RC, Velani SL. Inhomogeneous Diophantine approximation on planar curves. Mathematische Annalen. 2011;349(4):929–942. DOI: 10.1007/s00208-010-0548-9.
  111. Arnold VI. [Small denominators and problem of stability of motion in classical and celestial mechanics]. Uspekhi matematicheskikh nauk. 1963;18(6):91–192. Russian.
  112. Ptashnik BI. Nekorrektnye granichnye zadachi dlya differentsial’nykh uravnenii s chastnymi proizvodnymi [Incorrectly defined boundary problems for partial differential equations]. Kyiv: Naukova dumka; 1984. 264 p. Russian.
  113. Cadambe VR, Jafar SA. Interference alignment and degrees of freedom of the K-user interference channel. IEEE Transactions on Information Theory. 2008;54(8):3425–3441. DOI: 10.1109/TIT.2008.926344.
  114. Jafar SA. Interference alignment: a new look at signal dimensions in a communication network. Foundations and Trends in Communications and Information Theory. 2011;7(1):1–134. DOI: 10.1561/0100000047.
  115. Jafar SA, Shamai Sh. Degrees of freedom region of the MIMO X channel. IEEE Transactions on Information Theory. 2008;54(1):151–170. DOI: 10.1109/tit.2007.911262.
  116. Beresnevich V, Velani S. Number theory meets wireless communications: an introduction for dummies like us. In: Beresnevich V, Burr A, Nazer B, Velani S, editors. Number theory meets wireless communications. [S. l.]: Springer International Publishing; 2020. p. 1–67. DOI: 10.1007/978-3-030-61303-7_1.
  117. Budarina N, O’Donnell H. On a problem of Nesterenko: when is the closest root of a polynomial a real number? International Journal of Number Theory. 2012;8(3):801–811. DOI: 10.1142/s1793042112500455.
  118. Motahari AS, Oveis-Gharan S, Maddah-Ali MA, Khandani AK. Real interference alignment: exploiting the potential of single antenna systems. IEEE Transactions on Information Theory. 2014;60(8):4799–4810. DOI: 10.1109/tit.2014.2329865.
  119. Sliesoraitienė R. Malerio – Sprindžiuko teoremos analogas trečio laipsnio dviejų kintamųjų polinomams. (II). Lietuvos matematikos rinkinys. 1970;10:791–814. Russian.
  120. Manstavičius E. Jonas Kubilius 1921–2011. Lithuanian Mathematical Journal. 2021;61:285–288. DOI: 10.1007/s10986-021-09522-z.
Published
2021-12-15
Keywords: J. Kubilius, Diophantine approximation, Mahler’s conjecture, metric number theory, transcendence and algebraic numbers
How to Cite
Beresnevich, V. V., Bernik, V. I., Götze, F., Zasimovich, E. V., & Kalosha, N. I. (2021). Contribution of Jonas Kubilius to the metric theory of Diophantine approximation of dependent variables. Journal of the Belarusian State University. Mathematics and Informatics, 3, 34-50. https://doi.org/10.33581/2520-6508-2021-3-34-50
Section
Mathematical Logic, Algebra and Number Theory