Вклад Йонаса Кубилюса в метрическую теорию диофантовых приближений зависимых переменных

  • Виктор Вячеславович Бересневич Колледж им. Джеймса Рашолма, Йоркский университет, Западный кампус, YO10 5DD, г. Йорк, Великобритания
  • Василий Иванович Берник Институт математики НАН Беларуси, ул. Сурганова, 11, 220072, г. Минск, Беларусь
  • Фридрих Гётце Билефельдский университет, Университетсштрассе, 25, D-33615, г. Билефельд, Германия
  • Елена Васильевна Засимович Институт математики НАН Беларуси, ул. Сурганова, 11, 220072, г. Минск, Беларусь
  • Николай Иванович Калоша Институт математики НАН Беларуси, ул. Сурганова, 11, 220072, г. Минск, Беларусь https://orcid.org/0000-0001-5266-9900

Аннотация

Посвящается 100-летию со дня рождения академика Йонаса Кубилюса, который является основоположником метрической теории диофантовых приближений. Проводится обзор наиболее важных результатов, полученных в метрической теории диофантовых приближений. Отмечается, что за последние 70 лет в области диофантовых приближений сделано много выдающихся достижений. Упоминаются работы лауреатов Филдсовской премии Алана Бейкера и Григория Маргулиса, а также ученика Й. Кубилюса, академика АН БССР Владимира Спринджука, который в 1964 г. решил известную проблему Малера и стал основателем белорусской школы теории чисел.

Биографии авторов

Виктор Вячеславович Бересневич , Колледж им. Джеймса Рашолма, Йоркский университет, Западный кампус, YO10 5DD, г. Йорк, Великобритания

доктор физико-математических наук, профессор; профессор

Василий Иванович Берник , Институт математики НАН Беларуси, ул. Сурганова, 11, 220072, г. Минск, Беларусь

доктор физико-математических наук, профессор; главный научный сотрудник отдела теории чисел

Фридрих Гётце , Билефельдский университет, Университетсштрассе, 25, D-33615, г. Билефельд, Германия

доктор физико-математических наук, профессор; профессор

Елена Васильевна Засимович , Институт математики НАН Беларуси, ул. Сурганова, 11, 220072, г. Минск, Беларусь

аспирантка отдела теории чисел. Научный руководитель – В. И. Берник

Николай Иванович Калоша, Институт математики НАН Беларуси, ул. Сурганова, 11, 220072, г. Минск, Беларусь

кандидат физико-математических наук; старший научный сотрудник отдела теории чисел

Литература

  1. Kubilius JP. [On application of Academician Vinogradov’s method to solving a certain problem in metric number theory]. Doklady Akademii nauk SSSR. 1949;67:783–786. Russian.
  2. Kubilius JP. [On a metrical problem in Diophantine approximation theory]. Doklady Akademii nauk Litovskoi SSR. 1959;2:3–7. Russian.
  3. Sprindžuk VG. [Proof of Mahler’s conjecture on the measure of the set of S-numbers]. Izvestiya Akademii nauk SSSR. Seriya matematicheskaya. 1965;29(2):379–436. Russian.
  4. Sprindžuk VG. Problema Malera v metricheskoi teorii chisel [Mahler’s problem in metric number theory]. Minsk: Nauka i tekhnika; 1967. 181 p. Russian.
  5. Sprindžuk VG. [Advances and problems in the theory of Diophantine approximation]. Uspekhi matematicheskikh nauk. 1980;35(4):3–68. Russian.
  6. Borel MÈ. Les probabilités dénombrables et leurs applications arithmétiques. Rendiconti del Circolo Matematico di Palermo (1884–1940). 1909;27:247–271. DOI: 10.1007/bf03019651.
  7. Khintchine A. Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der diophantischen Approximationen. Mathematische Annalen. 1924;92:115–125.
  8. Groshev AV. [Theorem on a system of linear forms]. Doklady Akademii nauk SSSR. 1938;19:151–152. Russian.
  9. Harman G. Metric number theory. Oxford: Clarendon Press; 1998. 297 p. (London Mathematical Society monographs; new series 18).
  10. Cassels JWS. An introduction to Diophantine approximation. 1st edition. Cambridge: Cambridge University Press; 1957. 166 p. (Cambridge tracts in mathematics and mathematical physics; No. 45).
  11. Sprindžuk VG. Mahler’s problem in metric number theory. Volkmann B, translator. Providence: American Mathematical Society; 1969. 192 p. (Translations of mathematical monographs; volume 25).
  12. Khintchine A. Zwei Bemerkungen zu einer Arbeit des Herrn Perron. Mathematische Zeitschrift. 1925;22:274–284. DOI: 10.1007/bf01479606.
  13. Mahler K. Über das Maß der Menge aller S-Zahlen. Mathematische Annalen. 1932;106:131–139.
  14. Schmidt WM. Bounds for certain sums; a remark on a conjecture of Mahler. Transactions of the American Mathematical Society. 1961;101(2):200–210. DOI: 10.1090/s0002-9947-1961-0132036-2.
  15. Bugeaud Y. Approximation by algebraic numbers. Cambridge: Cambridge University Press; 2004. 290 p. (Cambridge tracts in mathematics; volume 160). DOI: 10.1017/CBO9780511542886.
  16. Koksma JF. Über die Mahlersche Klasseneinteilung der transzendenten Zahlen und die Approximation komplexer Zahlen durch algebraische Zahlen. Monatshefte für Mathematik. 1939;48(1):176–189. DOI: 10.1007/bf01696176.
  17. LeVeque WJ. Note on S-numbers. Proceedings of the American Mathematical Society. 1953;4:189–190. DOI: 10.1090/s0002-9939-1953-0054659-2.
  18. Kasch F, Volkmann B. Zur Mahlerschen Vermutung über S-Zahlen. Mathematische Annalen. 1958;136(5):442–453. DOI: 10.1007/BF01347794.
  19. Schmidt WM. Metrische Sätze über simultane Approximation abhängiger Größen. Monatshefte für Mathematik. 1964;68(2):154–166. DOI: 10.1007/bf01307118.
  20. Volkmann B. The real cubic case of Mahler’s conjecture. Mathematika. 1961;8(1):55–57. DOI: 10.1112/s0025579300002126.
  21. Davenport H. A note on binary cubic forms. Mathematika. 1961;8(1):58–62. DOI: 10.1112/s0025579300002138.
  22. Bernik V, Götze F, Gusakova A. On points with algebraically conjugate coordinates close to smooth curves. Zapiski nauchnykh seminarov POMI. 2016;448:14–47.
  23. Cassels JWS. Some metrical theorems in Diophantine approximation: v. on a conjecture of Mahler. Mathematical Proceedings of the Cambridge Philosophical Society. 1951;47(1):18–21. DOI: 10.1017/s0305004100026323.
  24. BakerA, Schmidt WM. Diophantine approximation and Hausdorff dimension. Proceedings of the London Mathematical Society. 1970;s3-21(1):1–11. DOI: 10.1112/plms/s3-21.1.1.
  25. Bernik V. [On the exact order of approximation of zero by values of integer polynomials]. Acta Arithmetica. 1989–1990;53(1):17–28. Russian.
  26. Beresnevich V. On approximation of real numbers by real algebraic numbers. Acta Arithmetica. 1999;90(2):97–112. DOI: 10.4064/aa-90-2-97-112.
  27. Beresnevich V. On a theorem of V. Bernik in the metric theory of Diophantine approximation. Acta Arithmetica. 2005;117(1):71–80. DOI: 10.4064/aa117-1-4.
  28. Bernik VI, Vasilyev DV. [A Khintchine-type theorem for integer polynomials with a complex variable]. Trudy Instituta matematiki NAN Belarusi. 1999;3:10–20. Russian.
  29. Beresnevich VV, Bernik VI, Kovalevskaya EI. On approximation of p-adic numbers by p-adic algebraic numbers. Journal of Number Theory. 2005;111(1):33–56. DOI: 10.1016/j.jnt.2004.09.007.
  30. MohammadiA, GolsefidyAS. S-arithmetic Khintchine-type theorem. Geometric and Functional Analysis. 2009;19(4):1147–1170. DOI: 10.1007/s00039-009-0029-z.
  31. Adiceam F, Beresnevich V, Levesley J, Velani S, Zorin E. Diophantine approximation and applications in interference alignment. Advances in Mathematics. 2016;302:231–279. DOI: 10.1016/j.aim.2016.07.002.
  32. Bernik VI, Shamukova NV. [Approximation of real numbers by integer algebraic numbers, and the Khintchineʼs theorem]. Doklady of the National Academy of Sciences of Belarus. 2006;50(3):30–32. Russian.
  33. Bernik VI, Dodson MM. Metric Diophantine approximation on manifolds. Cambridge: Cambridge University Press; 1999. 172 p. (Cambridge tracts in mathematics; volume 137). DOI: 10.1017/CBO9780511565991.
  34. Beresnevich V, Bernik V. On a metrical theorem of W. Schmidt. Acta Arithmetica. 1996;75(3):219–233. DOI: 10.4064/aa-75-3-219-233.
  35. Kleinbock DY, Margulis GA. Flows on homogeneous spaces and Diophantine approximation on manifolds. Annals of Mathematics. 1998;148(1):339–360. DOI: 10.2307/120997.
  36. Beresnevich V. A Groshev type theorem for convergence on manifolds. Acta Mathematica Hungarica. 2002;94(1–2):99–130. DOI: 10.1023/A:1015662722298.
  37. Bernik V, Kleinbock D, Margulis G. Khintchine-type theorems on manifolds: the convergence case for standard and multiplicative versions. International Mathematics Research Notices. 2001;2001(9):453–486. DOI: 10.1155/S1073792801000241.
  38. Beresnevich VV, Bernik VI, Kleinbock DYa, Margulis GA. Metric Diophantine approximation: the Khintchine – Groshev theorem for non-degenerate manifolds. Moscow Mathematical Journal. 2002;2(2):203–225. DOI: 10.17323/1609-4514-2002-2-2-203-225.
  39. Baker A. On a theorem of Sprindžuk. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 1966;292(1428):92–104. DOI: 10.1098/rspa.1966.0121.
  40. Koksma JF. Diophantische approximationen. Berlin: Springer; 1974. 172 p. (Ergebnisse der Mathematik und ihrer Grenzgebiete; volume 4). DOI: 10.1007/978-3-642-65618-7.
  41. Allen D, Beresnevich V. A mass transference principle for systems of linear forms and its applications. Compositio Mathematica. 2018;154(5):1014–1047. DOI: 10.1112/s0010437x18007121.
  42. Bernik VI, Vasilyev DV, Zasimovich EV. Diophantine approximation with the constant right-hand side of inequalities on short intervals. Doklady of the National Academy of Sciences of Belarus. 2021;65(4):397–403. Russian. DOI: 10.29235/1561-8323-2021-65-4-397-403.
  43. Jarnik V. Diophantische approximationen und Hausdorffsches mass. Matematicheskii sbornik’. 1929;36(3–4):371–382.
  44. Besicovitch AS. Sets of fractional dimensions (IV): on rational approximation to real numbers. Journal of the London Mathematical Society. 1934;s1-9(2):126–131. DOI: 10.1112/jlms/s1-9.2.126.
  45. Bernik VI. [Application of the Hausdorff dimension in the theory of Diophantine approximation]. Acta Arithmetica. 1983;42:219–253. Russian. DOI: 10.4064/aa-42-3-219-253.
  46. Melnichuk YuV. [Diophantine approximation on a circle and the Hausdorff dimension]. Matematicheskie zametki. 1979;26(3):347–354. Russian.
  47. Bernik VI, Morotskaya IL. [Diophantine approximation in p and the Hausdorff dimension]. Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series. 1986;3:3–9. Russian.
  48. Bernik VI, Kalosha NI. Approximation of zero by values of integer polynomials in the space  ×  × p. Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series. 2004;1:121–123. Russian.
  49. Budarina NV. [Metric theory of simultaneous Diophantine approximation in ¬ k lpm × × ]. Chebyshevskii sbornik. Posvyashchaetsya 65-i godovshchine so dnya rozhdeniya professora Sergeya Mikhailovicha Voronina. 2011;12(1):17–50. Russian.
  50. Badziahin D, Schleischitz J. An improved bound in Wirsing’s problem. Transactions of the American Mathematical Society. 2021;374:1847–1861. DOI: 10.1090/tran/8245.
  51. Bernik VI, Tishchenko KI. [Integral polynomials with an overfall of the coefficient values and Wirsing’s theorem]. Doklady of the National Academy of Belarus. 1993;37(5):9–11. Russian.
  52. Beresnevich V, Dickinson D, Velani S. Diophantine approximation on planar curves and the distribution of rational points (with an Appendix by R. C. Vaughan). Annals of Mathematics. 2007;166(2):367–426. DOI: 10.4007/annals.2007.166.367.
  53. Dickinson H, Dodson MM. Extremal manifolds and Hausdorff dimension. Duke Mathematical Journal. 2000;101(2):271–281. DOI: 10.1215/S0012-7094-00-10126-3.
  54. Rynne BP. Simultaneous Diophantine approximation on manifolds and Hausdorff dimension. Journal of Number Theory. 2003;98(1):1–9. DOI: 10.1016/s0022-314x(02)00035-5.
  55. Kudin AS, Lunevich AV. [An analogue of Khintchine’s theorem in the case of divergence in the fields of real, complex and p-adic numbers]. Trudy Instituta matematiki. 2015;23(1):76–83. Russian.
  56. Beresnevich V, Zorin E. Explicit bounds for rational points near planar curves and metric Diophantine approximation. Advances in Mathematics. 2010;225(6):3064–3087. DOI: 10.1016/j.aim.2010.05.021.
  57. Beresnevich V, Vaughan RC, Velani S, Zorin E. Diophantine approximation on manifolds and the distribution of rational points: contributions to the convergence theory. International Mathematics Research Notices. 2017;2017(10):2885–2908. DOI: 10.1093/imrn/rnv389.
  58. Huang J-J. The density of rational points near hypersurfaces. Duke Mathematical Journal. 2020;169(11):2045–2077. DOI: 10.1215/00127094-2020-0004.
  59. Simmons D. Some manifolds of Khinchin type for convergence. Journal de Théorie des Nombres de Bordeaux. 2018;30(1):175–193. DOI: 10.5802/jtnb.1021.
  60. Beresnevich V, Velani S. An inhomogeneous transference principle and Diophantine approximation. Proceedings of the London Mathematical Society. 2010;101(3):821–851. DOI: 10.1112/plms/pdq002.
  61. Yavid KYu. [An estimate for the Hausdorff dimension of sets of singular vectors]. Doklady Akademii nauk BSSR. 1987;31(9):777–780. Russian.
  62. Beresnevich V, Levesley J, Ward B. A lower bound for the Hausdorff dimension of the set of weighted simultaneously approximable points over manifolds. International Journal of Number Theory. 2021;17(8):1795–1814. DOI: 10.1142/S1793042121500639.
  63. Bernik VI. Applications of measure theory and Hausdorff dimension to the theory of Diophantine approximation. New advances in transcendence theory. 1988:25–36. DOI: 10.1017/CBO9780511897184.003.
  64. Bernik VI. [Application of Hausdorff dimension in the theory of Diophantine approximations]. Acta Arithmetica. 1983;42:219–253. Russian.
  65. Beresnevich V, Lee L, Vaughan RC, Velani S. Diophantine approximation on manifolds and lower bounds for Hausdorff dimension. Mathematika. 2017;63(3):762–779. DOI: 10.1112/s0025579317000171.
  66. Bernik VI, Pereverseva NA. The method of trigonometric sums and lower estimates of Hausdorff dimension. Analytic and Probabilistic Methods in Number Theory. 1992;2:75–81. DOI: 10.1515/9783112314234-011.
  67. Bugeaud Y. Approximation by algebraic integers and Hausdorff dimension. Journal of the London Mathematical Society. 2002;65(3):547–559. DOI: 10.1112/S0024610702003137.
  68. Beresnevich VV, Velani SL. A note on simultaneous Diophantine approximation on planar curves. Mathematische Annalen. 2007;337(4):769–796. DOI: 10.1007/s00208-006-0055-1.
  69. Beresnevich VV. Application of the consept of regular systems in the Metric theory of numbers. Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series. 2000;1:35–39. Russian.
  70. Beresnevich VV. [On construction of regular systems of points with real, complex and p-adic algebraic coordinates]. Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series. 2003;1:22–27. Russian.
  71. Kovalevskaya EI, Bernik V. Simultaneous inhomogeneous Diophantine approximation of the values of integral polynomials with respect to Archimedean and non-Archimedean valuations. Acta Mathematica Universitatis Ostraviensis. 2006;14(1):37–42.
  72. Bernik VI, Marozava IM. Baker’s conjecture and regular sets of algebraic numbers with a restriction on the value of the derivative. Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series. 1996;3:109–113. Belarusian.
  73. Kleinbock D, Tomanov G. Flows on S-arithmetic homogeneous spaces and applications to metric Diophantine approximation. Commentarii Mathematici Helvetici. 2007;82(3):519–581. DOI: 10.4171/cmh/102.
  74. Bernik VI, Sakovich NV. Regular systems of complex algebraic numbers. Doklady Akademii nauk Belarusi. 1994;38(5):10–13. Russian.
  75. Beresnevich VV, Kovalevskaya EI. [On Diophantine approximation of dependent variables in the p-adic case]. Matematicheskie zametki. 2003;25(1):22–37. Russian. DOI: 10.4213/mzm165.
  76. Bernik VI. [A metric theorem on the simultaneous approximation of a zero by the values of integral polynomials]. Izvestiya Akademii nauk SSSR. Seriya matematicheskaya. 1980;44(1):24–45. Russian.
  77. Želudevič F. Simultane diophantische Approximationen abhängiger Größen in mehreren Metriken. Acta Arithmetica. 1986;46(3):285–296. DOI: 10.4064/aa-46-3-285-296.
  78. Bernik V, Budarina N, Dickinson D. A divergent Khintchine theorem in the real, complex, and p-adic fields. Lithuanian Mathematical Journal. 2008;48(2):158–173. DOI: 10.1007/s10986-008-9005-9.
  79. Budarina N, Dickinson D, Bernik V. Simultaneous Diophantine approximation in the real, complex and p-adic fields. Mathematical Proceedings of the Cambridge Philosophical Society. 2010;149(2):193–216. DOI: 10.1017/s0305004110000162.
  80. Dombrovskii IR. [Simultaneous approximation of real numbers by algebraic numbers of bounded degree]. Doklady Akademii nauk BSSR. 1989;33(3):205–208. Russian.
  81. Beresnevich V. Rational points near manifolds and metric Diophantine approximation. Annals of Mathematics. 2012;175(1):187–235. DOI: 10.4007/annals.2012.175.1.5.
  82. Beresnevich VV, Velani SL. Simultaneous inhomogeneous Diophantine approximation on manifolds. Journal of Mathematical Sciences. 2012;180(5):531–541. DOI: 10.1007/s10958-012-0651-4.
  83. Budarina N, Dickinson D, Levesley J. Simultaneous Diophantine approximation on polynomial curves. Mathematika. 2010;56(1):77–85. DOI: 10.1112/s0025579309000382.
  84. Budarina N. On a problem of Bernik, Kleinbock and Margulis. Glasgow Mathematical Journal. 2011;53(3):669–681. DOI: 10.1017/s0017089511000255.
  85. Budarina N, Dickinson D. Simultaneous Diophantine approximation in two metrics and the distance between conjugate algebraic numbers in  × p. Indagationes Mathematicae. 2012;23(1–2):32–41. DOI: 10.1016/j.indag.2011.09.012.
  86. Bernik VI, Borbat VN. [Joint approximation of zero by values of integer-valued polynomials]. Trudy Matematicheskogo instituta imeni V. A. Steklova. 1997;218:58–73. Russian.
  87. Bernik VI, Budarina N, O’Donnell H. On regular systems of real algebraic numbers of third degree in short intervals. Sovremennye problemy matematiki. 2013;17:61–75. DOI: 10.4213/spm43.
  88. Bugeaud Y, Mignotte M. Polynȏmes à coefficients entiers prenant des valeurs positives aux points réels. Bulletin mathématique de la Société des Sciences Mathématiques de Roumanie. 2010;53(3):219–224.
  89. Bernik V, Götze F. A new connection between metric theory of Diophantine approximations and distribution of algebraic numbers. Contemporary Mathematics. 2015;631:33–45. DOI: 10.1090/conm/631/12594.
  90. Budarina NV. [Simultaneous Diophantine approximation with non-monotonic right-hand sides]. Doklady Akademii nauk. 2011;437(4):441–443. Russian.
  91. Bernik V, Mc Guire S. How small can polynomials be in an interval of given length? Glasgow Mathematical Journal. 2020;62(2):261–280. DOI: 10.1017/S0017089519000077.
  92. Bugeaud Y, Mignotte M. Polynomial root separation. International Journal of Number Theory. 2010;6(3):587–602. DOI: 10.1142/s1793042110003083.
  93. Beresnevich V, Bernik V, Götze F. The distribution of close conjugate algebraic numbers. Compositio Mathematica. 2010;146(5):1165–1179. DOI: 10.1112/S0010437X10004860.
  94. Bernik V, Budarina N, O’Donnell H. Discriminants of polynomials in the Archimedean and non-Archimedean metrics. Acta Mathematica Hungarica. 2018;154(2):265–278. DOI: https://doi.org/10.1007/s10474-018-0794-y.
  95. Huxley MN. The rational points close to a curve. Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Série 4. 1994;21(3):357–375.
  96. Koleda DV. On the asymptotic distribution of algebraic numbers with growing naive height. Chebyshevskii sbornik. 2015;16(1):191–204. Russian. DOI: 10.22405/2226-8383-2015-16-1-191-204.
  97. Götze F, Koleda D, Zaporozhets D. Joint distribution of conjugate algebraic numbers: a random polynomial approach. Advances in Mathematics. 2020;359:106849. DOI: 10.1016/j.aim.2019.106849.
  98. Lebed VV, Bernik VI. Algebraic points on a plane. Fundamental’naya i prikladnaya matematika. 2005;11(6):73–80. Russian.
  99. Koleda DU. Distribution of the real algebraic numbers of second degree. Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series. 2013;3:54–63. Russian.
  100. Koleda D. On the density function of the distribution of real algebraic numbers. Journal de Théorie des Nombres de Bordeaux. 2017;29(1):179–200. DOI: 10.5802/jtnb.975.
  101. Bernik VI, Götze F, Kalosha NI. Counting algebraic numbers in short intervals with rational points. Journal of the Belarusian State University. Mathematics and Informatics. 2019;1:4–11. Russian. DOI: 10.33581/2520-6508-2019-1-4-11.
  102. Budarina NV, Dickinson D, Bernik VI. Lower bounds for the number of vectors with algebraic coordinates near smooth surfaces. Doklady of the National Academy of Sciences of Belarus. 2020;64(1):7–12. Russian. DOI: 10.29235/1561-8323-2020-64-1-7-12.
  103. Bernik VI, Götze F. Distribution of real algebraic numbers of arbitrary degree in short intervals. Izvestiya: Mathematics. 2015;79(1):18–39. DOI: 10.1070/im2015v079n01abeh002732.
  104. Budarina N, Dickinson D. Diophantine approximation on non-degenerate curves with non-monotonic error function. Bulletin of the London Mathematical Society. 2009;41(1):137–146. DOI: 10.1112/blms/bdn116.
  105. Budarina N. Diophantine approximation on the curves with non-monotonic error function in the p-adic case. Chebyshevskii sbornik. 2010;11(1):74–80.
  106. Badziahin D, Beresnevich V, Velani S. Inhomogeneous theory of dual Diophantine approximation on manifolds. Advances in Mathematics. 2013;232(1):1–35. DOI: 10.1016/j.aim.2012.09.022.
  107. Badziahin D. Inhomogeneous Diophantine approximation on curves and Hausdorff dimension. Advances in Mathematics. 2010;223(1):329–351. DOI: 10.1016/j.aim.2009.08.005.
  108. Bernik V, Dickinson H, Yuan J. Inhomogeneous Diophantine approximation on polynomials in p. Acta Arithmetica. 1999;90(1):37–48. DOI: 10.4064/aa-90-1-37-48.
  109. Beresnevich V, Ganguly A, Ghosh A, Velani S. Inhomogeneous dual Diophantine approximation on affine subspaces. International Mathematics Research Notices. 2020;12:3582–3613. DOI: 10.1093/imrn/rny124.
  110. Beresnevich VV, Vaughan RC, Velani SL. Inhomogeneous Diophantine approximation on planar curves. Mathematische Annalen. 2011;349(4):929–942. DOI: 10.1007/s00208-010-0548-9.
  111. Arnold VI. [Small denominators and problem of stability of motion in classical and celestial mechanics]. Uspekhi matematicheskikh nauk. 1963;18(6):91–192. Russian.
  112. Ptashnik BI. Nekorrektnye granichnye zadachi dlya differentsial’nykh uravnenii s chastnymi proizvodnymi [Incorrectly defined boundary problems for partial differential equations]. Kyiv: Naukova dumka; 1984. 264 p. Russian.
  113. Cadambe VR, Jafar SA. Interference alignment and degrees of freedom of the K-user interference channel. IEEE Transactions on Information Theory. 2008;54(8):3425–3441. DOI: 10.1109/TIT.2008.926344.
  114. Jafar SA. Interference alignment: a new look at signal dimensions in a communication network. Foundations and Trends in Communications and Information Theory. 2011;7(1):1–134. DOI: 10.1561/0100000047.
  115. Jafar SA, Shamai Sh. Degrees of freedom region of the MIMO X channel. IEEE Transactions on Information Theory. 2008;54(1):151–170. DOI: 10.1109/tit.2007.911262.
  116. Beresnevich V, Velani S. Number theory meets wireless communications: an introduction for dummies like us. In: Beresnevich V, Burr A, Nazer B, Velani S, editors. Number theory meets wireless communications. [S. l.]: Springer International Publishing; 2020. p. 1–67. DOI: 10.1007/978-3-030-61303-7_1.
  117. Budarina N, O’Donnell H. On a problem of Nesterenko: when is the closest root of a polynomial a real number? International Journal of Number Theory. 2012;8(3):801–811. DOI: 10.1142/s1793042112500455.
  118. Motahari AS, Oveis-Gharan S, Maddah-Ali MA, Khandani AK. Real interference alignment: exploiting the potential of single antenna systems. IEEE Transactions on Information Theory. 2014;60(8):4799–4810. DOI: 10.1109/tit.2014.2329865.
  119. Sliesoraitienė R. Malerio – Sprindžiuko teoremos analogas trečio laipsnio dviejų kintamųjų polinomams. (II). Lietuvos matematikos rinkinys. 1970;10:791–814. Russian.
  120. Manstavičius E. Jonas Kubilius 1921–2011. Lithuanian Mathematical Journal. 2021;61:285–288. DOI: 10.1007/s10986-021-09522-z.
Опубликован
2021-12-15
Ключевые слова: Й. Кубилюс, диофантовы приближения, проблема Малера, метрическая теория чисел, трансцендентные и алгебраические числа
Как цитировать
Бересневич , В. В., Берник , В. И., Гётце , Ф., Засимович , Е. В., & Калоша, Н. И. (2021). Вклад Йонаса Кубилюса в метрическую теорию диофантовых приближений зависимых переменных. Журнал Белорусского государственного университета. Математика. Информатика, 3, 34-50. https://doi.org/10.33581/2520-6508-2021-3-34-50
Раздел
Математическая логика, алгебра и теория чисел