On rational Abel – Poisson means on a segment and approximations of Markov functions

  • Pavel G. Patseika Yanka Kupala State University of Grodno, 22 Ažeška Street, Hrodna 230023, Belarus https://orcid.org/0000-0001-7835-0500
  • Yauheni A. Rouba Yanka Kupala State University of Grodno, 22 Ažeška Street, Hrodna 230023, Belarus

Abstract

Approximations on the segment [−1, 1] of Markov functions by Abel – Poisson sums of a rational integral operator of Fourier type associated with the Chebyshev – Markov system of algebraic fractions in the case of a fixed number of geometrically different poles are investigated. An integral representation of approximations and an estimate of uniform approximations are found. Approximations of Markov functions in the case when the measure µ satisfies the conditions suppµ = [1, a], a > 1, dµ(t) = φ(t)dt and φ(t) ≍ (t − 1)α on [1, a], a are studied and estimates of pointwise and uniform approximations and the asymptotic expression of the majorant of uniform approximations are obtained. The optimal values of the parameters at which the majorant has the highest rate of decrease are found. As a corollary, asymptotic estimates of approximations on the segment [−1, 1] are given by the method of rational approximation of some elementary Markov functions under study.

Author Biographies

Pavel G. Patseika, Yanka Kupala State University of Grodno, 22 Ažeška Street, Hrodna 230023, Belarus

PhD (physics and mathematics); associate professor at the department of fundamental and applied mathematics, faculty of mathematics and informatics

Yauheni A. Rouba, Yanka Kupala State University of Grodno, 22 Ažeška Street, Hrodna 230023, Belarus

doctor of science (physics and mathematics), full professor; head of the department of fundamental and applied mathematics, faculty of mathematics and informatics

References

  1. Natanson IP. [On the order of approximation of a continuous 2π-periodic function using its Poisson integral]. Doklady Akademii nauk SSSR. 1950;72(1):11–14. Russian.
  2. Timan AF. [Exact estimation of the remainder in the approximation of periodic differentiable functions by Poisson integrals]. Doklady Akademii nauk SSSR. 1950;74(1):17–20. Russian.
  3. Stark EL. [Complete asymptotic decomposition for the upper face of the deviation of functions from Lip1 from the singular Abel – Poisson integral]. Matematicheskie zametki. 1973;13(1):21–28. Russian.
  4. Zhuk VV. [On the order of approximation of a continuous 2π-periodic function using Feyer and Poisson averages of its Fourier series]. Matematicheskie zametki. 1968;4(1):21–32. Russian.
  5. Rusetsky YuI. [On the approximation of continuous functions on a segment by Abel – Poisson means]. Sibirskii matematicheskii zhurnal. 1968;9(1):136–144. Russian.
  6. Zhyhallo TV. Approximation of functions satisfying the Lipschitz condition on a finite segment of the real axis by Poisson – Chebyshev’s integrals. Problemy upravleniya i informatiki. 2018;3:46–58. Russian.
  7. Dzhrbashyan MM. [On the theory of Fourier series in terms of rational functions]. Izvestiya Akademii nauk Armyanskoi SSR. Seriya: Matematika. 1956;9(7):3–28. Russian.
  8. Kitbalyan AA. [Decompositions by generalised trigonometric systems]. Izvestiya Akademii nauk Armyanskoi SSR. Seriya: Matematika. 1963;16(6):3–24. Russian.
  9. Markov AA. [Two proofs of convergence of some continuous fractions]. In: Izbrannye trudy po teorii nepreryvnykh drobei i teorii funktsii, naimenee uklonyayushchikhsya ot nulya [Selected works on the theory of continuous fractions and the theory of functions least deviating from zero]. Moscow: Gosudarstvennoe izdatel’stvo tekhniko-teoreticheskoi literatury; 1948. p. 106–119. Russian.
  10. Gonchar AA. [On the speed of rational approximation of some analytical functions]. Matematicheskii sbornik. 1978;105(2):147–163. Russian.
  11. Ganelius Т. Ortogonal polynomials and rational approximation of holomorphic function. In: Erdős P, Alpár L, Halász G, Sárközy A, editors. Studies in pure mathematics. To the memory of Paul Turán. Basel: Birkhäuser; 1978. p. 237–243.
  12. Andersson J-E. Best rational approximation to Markov functions. Journal of Approximation Theory. 1994;76(2):219–232. DOI: 10.1006/jath.1994.1015.
  13. Pekarskii AA. [Best uniform rational approximations to Markov functions]. Algebra i analiz. 1995;7(2):121–132. Russian.
  14. Vyacheslavov NS, Mochalina EP. Rational approximations of functions of Markov – Stieltjes type in Hardy spaces Hp, 0 < p ≤ ∞. Moscow University Mathematics Bulletin. 2008;63(4):125–134. DOI: 10.3103/S0027132208040013.
  15. Starovoitov AP, Labych YuA. [Rational approximation of Markov functions generated by Borel measures of power type]. Problemy fiziki, matematiki i tekhniki. 2009;1:69–73. Russian.
  16. Pekarskii AA, Rouba EA. [Uniform approximations of Stieltjes functions by orthogonal projection on the set of rational functions]. Matematicheskie zametki. 1999;65(3):362–368. Russian.
  17. Takenaka S. On the orthogonal functions and a new formula of interpolations. Japanese Journal of Mathematics: Transactions and Abstracts. 1925;2:129–145. DOI: 10.4099/jjm1924.2.0_129.
  18. Malmquist F. Sur la determination d’une classe functions analytiques par leurs dans un ensemble donne de points. In: Comptes rendus du Sixtiéme Сongrés des mathématiciens scandinaves. Copenhagen: [s. n.]; 1926. p. 253–259.
  19. Dzhrbashyan MM, Kitbalyan AA. [On a generalisation of Chebyshev polynomials]. Doklady Akademii nauk Armyanskoi SSR. 1964;38(5):263–270. Russian.
  20. Rovba EA, Mikulich EG. Constants in rational approximation of Markov – Stieltjes functions with fixed number of poles. Vesnik of Yanka Kupala State University of Grodno. Series 2. Mathematics. Physics. Informatics, Computer Technology and its Control. 2013;1:12–20.
  21. Lungu KN. [On best approximations by rational functions with a fixed number of poles]. Matematicheskii sbornik. 1971;86(2):314–324. Russian.
  22. Lungu KN. [On the best approximations by rational functions with a fixed number of poles]. Sibirskii matematicheskii zhurnal. 1984;25(2):151–160. Russian.
  23. Rouba YA. [On a direct method in a rational approximation]. Doklady Akademii nauk BSSR. 1979;23(11):968–971. Russian.
  24. Fichtenholz GM. Kurs differentsial’nogo i integral’nogo ischisleniya. Tom 2 [Course of differential and integral calculus. Volume 2]. Moscow: Fizmatlit; 2003. 864 p. Russian.
  25. Patseika PG, Rouba YA, Smatrytski KA. On one rational integral operator of Fourier – Chebyshev type and approximation of Markov functions. Journal of the Belarusian State University. Mathematics and Informatics. 2020;2:6–27.
  26. Bernshtein SN. Ekstremal’nye svoistva polinomov i nailuchshee priblizhenie nepreryvnykh funktsii odnoi veshchestvennoi peremennoi. Chast’ 1 [Extremal properties of polynomials and the best approximation of continuous functions of one real variable. Part 1]. Moscow: Glavnaya redaktsiya obshchetekhnicheskoi literatury; 1937. 200 p. (Matematika v monografiyakh). Russian.
Published
2021-11-19
Keywords: Markov functions, rational integral operators, Abel – Poisson means, Chebyshev – Markov algebraic fractions, best approximations, asymptotic estimates, exact constants
How to Cite
Patseika, P. G., & Rouba, Y. A. (2021). On rational Abel – Poisson means on a segment and approximations of Markov functions. Journal of the Belarusian State University. Mathematics and Informatics, 3, 6-24. https://doi.org/10.33581/2520-6508-2021-3-6-24