Mathematical models of Ponzi schemes that consider the stochastic nature of decision-making

  • Grant A. Kesiyan Kuban State University, 149 Stavropolskaja Street, Krasnodar 350040, Russia
  • Anna V. Kovalenko Kuban State University, 149 Stavropolskaja Street, Krasnodar 350040, Russia
  • Makhamet Ali Kh. Urtenov Kuban State University, 149 Stavropolskaja Street, Krasnodar 350040, Russia
  • Zulfa M. Laipanova Karachay-Cherkessian State University named after U. D. Aliev, 29 Lenina Street, Karachaevsk 369202, Russia
  • Anna V. Ovsyannikova Financial University under the Government of the Russian Federation, 49/2 Leningradskij Avenue, Moscow 125167, Russia

Abstract

In this paper, we further develop well-known approaches to modelling the functioning of Ponzi schemes and generalise them using stochastic differential equations in the Ito form. The applied models take into account the dependence of the scheme’s existence time on the accrued interest rate and the growth of the number of clients, as well as different variants of the advertising campaign. The obtained formulas and results of the corresponding experiments are given.

Author Biographies

Grant A. Kesiyan, Kuban State University, 149 Stavropolskaja Street, Krasnodar 350040, Russia

senior lecturer at the department of data analysis and artificial intelligence, faculty of computer technology and applied mathematics

Anna V. Kovalenko, Kuban State University, 149 Stavropolskaja Street, Krasnodar 350040, Russia

doctor of science (engineering), docent; head of the department of data analysis and artificial intelligence, faculty of computer technology and applied mathematics

Makhamet Ali Kh. Urtenov, Kuban State University, 149 Stavropolskaja Street, Krasnodar 350040, Russia

doctor of science (physics and mathematics), full professor; professor at the department of applied mathematics, faculty of computer technology and applied mathematics

Zulfa M. Laipanova, Karachay-Cherkessian State University named after U. D. Aliev, 29 Lenina Street, Karachaevsk 369202, Russia

PhD (physics and mathematics), docent; head of the department of mathematical analysis, faculty of physics and mathematics, and acting dean of the faculty of physics and mathematics

Anna V. Ovsyannikova, Financial University under the Government of the Russian Federation, 49/2 Leningradskij Avenue, Moscow 125167, Russia

PhD (pedagogics), docent; associate professor at the department of mathematics, faculty of information technology and big data analysis

References

  1. Kovalenko AV, Urtenov MKh, Chagarov RH. Mathematical modeling of financial pyramid scheme. Part 1, Definitions. Polythematic Online Scientific Journal of Kuban State Agrarian University [Internet]. 2012 [cited 2023 July 17];8. Available from: http:// ej.kubagro.ru/2012/08/pdf/29.pdf. Russian.
  2. Kovalenko AV, Urtenov MKh, Chagarov RH. Mathematical modeling of financial pyramid scheme. Part 2, Discrete models. Polythematic Online Scientific Journal of Kuban State Agrarian University [Internet]. 2012 [cited 2023 July 17];8. Available from: http://ej.kubagro.ru/2012/08/pdf/30.pdf. Russian.
  3. Kovalenko AV, Urtenov MKh, Chagarov RH. Mathematical modeling of financial pyramid scheme. Part 3, Continuous models. Polythematic Online Scientific Journal of Kuban State Agrarian University [Internet]. 2012 [cited 2023 July 17];8. Available from: http://ej.kubagro.ru/2012/08/pdf/31.pdf. Russian.
  4. Dubovsky SV. Prognozirovanie inflyatsii i obmennogo kursa rublya v rossiiskoi nestatsionarnoi ekonomike [Forecasting inflation and the ruble exchange rate in the Russian non-stationary economy]. Moscow: URSS; 2001. 40 p. (Trudy Instituta sistemnogo analiza RAN). Russian.
  5. Dubovsky SV. Ruble exchange rate as a result of money issue, foreign trade and wandering financial flows. Economics and Mathematical Methods. 2002;38(2):84–96. Russian.
  6. Artzrouni M. The mathematics of Ponzi schemes. Mathematical Social Sciences. 2009;58(2):190–201. DOI: 10.1016/j.mathsocsci.2009.05.003.
  7. Huynh PD, Dau SH, Li X, Luong P, Viterbo E. Improving robustness and accuracy of Ponzi scheme detection on Ethereum using time-dependent features. arXiv:2308.16391 [Preprint]. 2023 [cited 2023 August 31]: [17 p.]. Available from: https://arxiv.org/ abs/2308.16391.
  8. Fan S, Fu S, Xu H, Cheng X. Al-SPSD: anti-leakage smart Ponzi schemes detection in blockchain. Information Processing & Management. 2021;58(4):102587. DOI: 10.1016/j.ipm.2021.102587.
  9. van de Voort J, Coneys S. Classifying bitcoin Ponzi schemes with machine learning [Internet]. Shanghai: New York University Shanghai; 2018 December 1 [cited 2023 July 17]. [about 8 p.]. Available from: http://dx.doi.org/10.13140/RG.2.2.13091.58405.
  10. Gastwirth JL. A probability model of a pyramid scheme. The American Statistician.1977;31(2):79–82. DOI: 10.1080/00031 305.1977.10479200.
  11. Belianin A, Issoupova O. Financial pyramids in transitional economies: a game-theoretic approach. Moscow: EERC; 2001. 70 p. (Education and research consortium working paper series; number 2K /10).
  12. Novikov AK, Osadchii AA. Matematicheskoe modelirovanie protsessov pritoka i ottoka kapitala v strukture finansovoi piramidy i realizatsiya modeli na EVM [Mathematical modelling of processes of inflow and outflow of capital in the structure of the financial pyramid and realization of the model on the computer] [Internet]. Moscow: Lomonosov Moscow State University; 2022 January 7 [cited 2023 July 17]. 41 p. Available from: https://www.researchgate.net/publication/358771924_Matematiceskoe_modelirovanie_processov_pritoka_i_ottoka_kapitala_v_strukture_finansovoj_piramidy_i_realizacia_modeli_na_EVM. Russian.
  13. Kesiyan GA, Urtenov MKh, Kovalenko AV. Matematicheskie modeli tsenoobrazovaniya na rossiiskom rynke tsennykh bumag [Mathematical models of pricing in the Russian securities market]. Krasnodar: Kuban State University; 2014. 158 p. Russian.
Published
2024-08-01
Keywords: mathematical modelling, financial pyramid, Ponzi scheme, stochastic differential equations, Ito processes, numerical Runge – Kutta scheme
How to Cite
Kesiyan, G. A., Kovalenko, A. V., Urtenov, M. A. K., Laipanova, Z. M., & Ovsyannikova, A. V. (2024). Mathematical models of Ponzi schemes that consider the stochastic nature of decision-making. Journal of the Belarusian State University. Mathematics and Informatics, 2, 27-39. Retrieved from https://journals.bsu.by/index.php/mathematics/article/view/6358
Section
Probability Theory and Mathematical Statistics