Properties of the intrinsically stationary stochastic processes

  • Tatsiana V. Tsekhavaya Belarusian State University, Nezavisimosti avenue, 4, 220030, Minsk

Abstract

Intrinsically stationary random processes with continuous time are investigated. Their connections with second-order stationary processes and processes with the second-order stationary increments are studied. The properties of semivariogram of the stationary random processes are investigated. Necessary and sufficient conditions for continuity, differentiability and integrability in the mean square sense of the intrinsically stationary stochastic processes in terms of their semivariogram are found. It is shown that the derivative in the mean square sense of the intrinsically stationary random process, for which the second-order moment is exists, is a second-order stationary random process.

Author Biography

Tatsiana V. Tsekhavaya, Belarusian State University, Nezavisimosti avenue, 4, 220030, Minsk

PhD (physics and mathematics), docent; associate professor at the department of probability theory and
mathematical statistics, faculty of applied mathematics and computer sciences

References

  1. Bulinskii A. V., Shiryaev A. N. Teoriya sluchainykh protsessov [The theory of stochastic processes]. Moscow, 2005 (in Russ.).
  2. Yaglom A. M. Korrelyatsionnaya teoriya protsessov so sluchainymi statsionarnymi n-mi prirashcheniyami. Mat. sb. 1955. Vol. 37 (79), No. 1. P. 141–196 (in Russ.).
  3. Kolmogorov A. N. Krivye v gilʼbertovom prostranstve, invariantnye po otnosheniyu k odnoparametricheskoi gruppe dvizhenii [Curves in Hilbert space that are invariant with respect to the one-parameter group of motions]. Dokl. Akad. nauk SSSR. 1940. Vol. 26, No. 1. P. 6 – 9 (in Russ.).
  4. Cressie N. Statistics for Spatial Data. New York, 1991.
  5. Matheron G. Principles of Geostatistics. Econ. Geol. 1963. Vol. 58. P. 1246 –1266.
  6. Kolmogorov A. N. Lokalʼnaya struktura turbulentnosti v neszhimaemoi vyazkoi zhidkosti pri ochenʼ bolʼshikh chislakh Reinolʼdsa [The local structure of turbulence in an incompressible viscous fluid for very large Reynolds numbers]. Dokl. Akad. nauk SSSR. 1941. Vol. 30, No. 4. P. 299 –303 (in Russ.).
  7. Tsekhovaya T. V. Svoistva variogrammy vnutrenne statsionarnykh sluchainykh protsessov [The properties of the variogram of intrinsically stationary random processes]. Teoriya veroyatnostei, matematicheskaya statistika i ikh prilozheniya : proc. of Int. Sci. Conf. (Minsk, 22 April, 2004). Minsk, 2004. P. 181–186 (in Russ.).
  8. Tsekhovaya T. V. Pervye dva momenta otsenki variogrammy gaussovskogo sluchainogo protsessa [The first two moments of the variogram estimator of a Gaussian stochastic process]. Differentsialʼnye uravneniya i sistemy kompʼyuternoi algebry : proc. of Int. Math. Conf. (Brest, 5–8 Oct., 2005) : in 2 parts. Brest, 2005. Part 2. P. 78–82 (in Russ.).
  9. Loev M. Teoriya veroyatnostei [Probability theory]. Moscow, 1962 (in Russ.).
  10. Venttselʼ A. D. Kurs teorii sluchainykh protsessov [The course of the theory of random processes]. Moscow, 1975 (in Russ.).
Published
2017-12-03
Keywords: stochastic process, intrinsic stationarity, variogram, stochastic analysis
How to Cite
Tsekhavaya, T. V. (2017). Properties of the intrinsically stationary stochastic processes. Journal of the Belarusian State University. Mathematics and Informatics, 1, 28-33. Retrieved from https://journals.bsu.by/index.php/mathematics/article/view/734
Section
Probability Theory and Mathematical Statistics