Matrix-free iterative processes with least-squares error damping for nonlinear systems of equations

  • Ivan V. Bondar Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus
  • Barys V. Faleichyk Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

Abstract

New iterative processes for numerical solution of big nonlinear systems of equations are considered. The processes do not require factorization and storing of Jacobi matrix and employ a special technique of convergence acceleration which is called least-squares error damping and requires solution of auxiliary linear least-squares problems of low dimension. In linear case the resulting method is similar to the general minimal residual method (GMRES) with preconditioning. In nonlinear case, in contrast to popular Newton – Krylov method, the computational scheme do not involve operation  of difference approximation of derivative operator. Numerical experiments include three nonlinear problems originating from two-dimensional elliptic partial differential equations and exhibit advantage of the proposed method compared to Newton – Krylov method.

Author Biographies

Ivan V. Bondar, Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

assistant at the department of computational mathematics, faculty of applied mathematics and computer science

Barys V. Faleichyk, Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

PhD (physics and mathematics); associate professor at the department of computational mathematics, faculty of applied mathematics and computer science

References

  1. Faleichik B., Bondar I., Byl V. Generalized Picard iterations: A class of iterated Runge – Kutta methods for stiff problems. J. Comput. Appl. Math. 2014. Vol. 262. P. 37 –50. DOI: 10.1016/j.cam. 2013.10.036.
  2. Saad Y. Iterative methods for Sparse Linear Systems. 2nd ed. Philadelphia : Siam, 2003.
  3. Knoll D. A., Keyes D. E. Jacobian-free Newton – Krylov methods: a survey of approaches and applications. J. Comput. Phys. 2004. Vol. 193, issue 2. P. 357–397 . DOI: 10.1016/j.jcp. 2003.08.010.
  4. Faddeev D. K., Faddeeva V. N. [Computational methods of linear algebra]. Moscow : Fizmatgiz, 1960 (in Russ.).
  5. Ortega J., Rheinboldt V. [Iterative methods for solving nonlinear equations with many unknowns]. Moscow : Mir, 1975 (in Russ.).
  6. Shapeev V. P., Vorozhtsov E. V., Isaev V. I., et al. [The method of collocations and least residuals for three-dimensional Navier – Stokes equations]. Vychisl. metody program. [Numer. Methods Program.]. 2013. No. 14. P. 306 –322 (in Russ.).
  7. Kurosh A. G. [The course of higher algebra]. 9th ed. Moscow : Glavnaya redaktsiya fiziko-matematicheskoi literatury, 1968 (in Russ.).
  8. Trefethen L. N., Bau D. III. Numerical Linear Algebra. Philadelphia : Siam, 1997.
  9. Samarsky A. A. [The theory of difference schemes]. Moscow : Nauka, 1977 (in Russ.).
  10. Baker A. H., Jessup E. R., Manteuffel T. A Technique for Accelerating the Convergence of Restarted GMRES. SIAM J. Matrix Anal. Appl. 2005. Vol. 26, issue 4. P. 962– 984. DOI: 10.1137/S0895479803422014.
  11. Walker H., Peng N. Anderson acceleration for fixed-point iterations. SIAM J. Numer. Anal. 2011. Vol. 49, issue 4. P. 1715–1735. DOI: 10.1137/10078356X.
  12. Toth A., Kelley C. T. Convergence Analysis for Anderson Acceleration. SIAM J. Numer. Anal. 2015. Vol. 53, issue 2. P. 805–819. DOI: 10.1137/130919398.
Published
2018-02-14
Keywords: nonlinear systems of equations, matrix-free methods, acceleration of convergence, least-squares, Newton – Krylov method, difference schemes
How to Cite
Bondar, I. V., & Faleichyk, B. V. (2018). Matrix-free iterative processes with least-squares error damping for nonlinear systems of equations. Journal of the Belarusian State University. Mathematics and Informatics, 3, 73-84. Retrieved from https://journals.bsu.by/index.php/mathematics/article/view/759