Boundary value problem for system of finite-difference with averaging equations

  • Sergey A. Spaskov Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus
  • Anton K. Khmyzov Epam Systems, 1/1 Akademika Kupreviča Street, Minsk 220141, Belarus

Abstract

The boundary value problem for the system of linear nonhomogeneous differential equations with generalized coefficients is considered X(t) = L(t)X(t) + F(t), M1X(0) + M2X(b) = Q, where tT = [0, b], L : T → Rpxp and F : T → Rp are right-continuous matrix and vector valued functions of bounded variation; M1, M2 ∈ Rpxp, Q ∈ Rp are defined matrices and vector. The problem is investigated with the help of the corresponding finite-difference with averaging equation behavior studying. The definition of the fundamental matrix, corresponding to the finite-difference with averaging equation is introduced. The theorem of the existence and uniqueness of the finite-difference with averaging boundary value problem, corresponding to the described system is proved.

Author Biographies

Sergey A. Spaskov, Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

postgraduate student at the department of functional analysis and analytical economics, faculty of mechanics and mathematics

Anton K. Khmyzov, Epam Systems, 1/1 Akademika Kupreviča Street, Minsk 220141, Belarus

leading software engineer

References

  1. Das P. S., Sharma R. R. Existence and stability of measure differential equations. Czech. Math. J. 1972. Vol. 22, No. 1. P. 145–158.
  2. Zavalischin S. T., Sesekin A. N. Impulʼsnye protsessy: modeli i prilozheniya [Impulsive Processes. Models and Applications]. Moscow : Nauka, 1991 (in Russ.).
  3. Antosik P., Mikusinski Y., Sikorski R. Teoriya obobshchennykh funktsii: sekventsialʼnyi podkhod [Theory of distributions. The sequential approach]. Moscow : Mir, 1976 (in Russ.).
  4. Colombeau J. F. New generalized functions and multiplication of distributions. Amsterdam : North-Holland Publ. Co., 1984.
  5. Lazakovich N. V. [Stochastic differentials in the algebra of generalized random processes]. Rep. of the Acad. of Sci. of Belarus. 1994. Vol. 38, No. 5. P. 23–27 (in Russ.).
  6. Yablonski A. Differential equations with generalized coefficients. Nonlinear Anal. 2005. Vol. 63, issue 2. P. 171–197. DOI: 10.1016/j.na.2005.03.108.
  7. Lazakovich N. V., Yablonski O. L., Khmyzov A. K. [The Cauchy problem for systems of differential equations with generalized coefficients in the direct product of algebras of mnemonic functions]. Rep. of the Natl. Acad. of Sci. of Belarus. 2011. Vol. 55, No. 2. P. 5–9 (in Russ.).
  8. Vladimirov V. S. Uravneniya matematicheskoi fiziki [Equations of Mathematical Physics]. Мoscow : Nauka, 1981 (in Russ.).
  9. Hörmander L. The analysis of linear partial differential operators I, Grundlehren der Mathematischen Wissenschaft. Berlin ; Heidelberg : Springer-Verlag, 2003.
  10. Ben-Israel Adi, Greville Thomas N. E. Generalized Inverses: Theory and Applications. New York : Springer-Verlag, 2003.
  11. Autushka T. S., Lazakovich N. V., Rusetski A. Y. [Cauchy problem for linear inhomogeneous differential equations of second order with generalized coefficients in algebra of mnemofunctions]. Proc. Natl. Acad. of Sci. of Belarus. Phys. and Math. Ser. 2013. No. 3. P. 83–92 (in Russ.).
Published
2018-05-05
Keywords: system of linear nonhomogeneous differential equations, boundary value problem, finite-difference with averaging equations, fundamental matrix
How to Cite
Spaskov, S. A., & Khmyzov, A. K. (2018). Boundary value problem for system of finite-difference with averaging equations. Journal of the Belarusian State University. Mathematics and Informatics, 1, 17-28. Retrieved from https://journals.bsu.by/index.php/mathematics/article/view/882