Counting algebraic numbers in short intervals with rational points
Abstract
In 2012 it was proved that real algebraic numbers follow a nonuniform but regular distribution, where the respective definitions go back to H. Weyl (1916) and A. Baker and W. Schmidt (1970). The largest deviations from the uniform distribution occur in neighborhoods of rational numbers with small denominators. In this article the authors are first to specify a gene ral condition that guarantees the presence of a large quantity of real algebraic numbers in a small interval. Under this condition, the distribution of real algebraic numbers attains even stronger regularity properties, indicating that there is a chance of proving Wirsing’s conjecture on approximation of real numbers by algebraic numbers and algebraic integers.
References
- Weyl H. Über die Gleichverteilung von Zahlen mod. Eins. Mathematische Annalen. 1916;77(3):313–352. DOI: 10.1007/BF01475864.
- Kuipers L, Niederreiter H. Uniform distribution of sequences. New York: Wiley; 1974. 390 p.
- Baker A, Schmidt WM. Diophantine approximation and Hausdorff dimension. Proceedings of the London Mathematical Society. 1970;21:1–11. DOI: 10.1112/plms/s321.1.1.
- Bernik VI. Application of the Hausdorff dimension in the theory of Diophantine approximations. American Mathematical Society Translations. 1988;40:15– 44.
- Khintchine A. Einige sätze über kettenbrüche, mit anwendungen auf die theorie der Diophantischen approximationen. Mathematische Annalen. 1924;92(1–2):115–125. DOI: 10.1007/BF01448437.
- Bernik VI. O tochnom poryadke priblizheniya nulya znacheniyami tselochislennykh mnogochlenov [The exact order of approximating zero by values of integral polynomials]. Acta Arithmetica. 1989;53(1):17–28. Russian.
- Bernik VI, Dodson MM. Metric Diophantine Approximation on Manifolds. Cambridge: Cambridge University Press; 1999. 172 p. (Cambridge Tracts in Mathematics; 137).
- Beresnevich VV. A Groshev type theorem for convergence on manifolds. Acta Mathematica Hungarica. 2002;94(1–2):99 –130.
- Bernik VI, Kleinbock D, Margulis GA. Khintchinetype theorems on manifolds: the convergence case for standard and multiplicative versions. International Mathematics Research Notices. 2001;9:453– 486.
- Beresnevich VV, Bernik VI, Kleinbock D, Margulis GA. Metric Diophantine approximation: The Khintchine – Groshev theorem for nondegenerate manifolds. Moscow Mathematical Journal. 2002;2(2):203–225.
- Bernik VI, Götze F. Distribution of real algebraic numbers of arbitrary degree in short intervals. Izvestiya: Mathematics. 2015;79(1):18–39. DOI: 10.1070/IM2015v079n01ABEH002732.
- Kaliada D. Ab razmerkavanni rjechaisnyh algebraichnyh likaw dadzenaj stupeni [Distribution of real algebraic numbers of a given degree]. Doklady Natsional’noi akademii nauk Belarusi. 2012;56(3):28–33. Belarusian.
- Bugeaud Y. Approximation by Algebraic Numbers. Cambridge: Cambridge University Press; 2004. 290 p. (Cambridge Tracts in Mathematics; 160). DOI: 10.2277/0521823293.
- Bernik VI, Götze F, Gusakova AG. On points with algebraically conjugate coordinates close to smooth curves. Moscow Journal of Combinatorics and Number Theory. 2016;6(2–3):57–100.
- Cassels JWS. An Introduction to Diophantine Approximation. Cambridge: Cambridge University Press; 1957. 168 p. (Cambridge Tracts in Mathematics and Mathematical Physics; 45).
- Sprindzhuk VG. Problema Malera v metricheskoi teorii chisel [Mahler’s problem in metric number theory]. Minsk: Nauka i tekhnika; 1967. 184 p. Russian.
Copyright (c) 2019 Journal of the Belarusian State University. Mathematics and Informatics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who are published in this journal agree to the following:
- The authors retain copyright on the work and provide the journal with the right of first publication of the work on condition of license Creative Commons Attribution-NonCommercial. 4.0 International (CC BY-NC 4.0).
- The authors retain the right to enter into certain contractual agreements relating to the non-exclusive distribution of the published version of the work (e.g. post it on the institutional repository, publication in the book), with the reference to its original publication in this journal.
- The authors have the right to post their work on the Internet (e.g. on the institutional store or personal website) prior to and during the review process, conducted by the journal, as this may lead to a productive discussion and a large number of references to this work. (See The Effect of Open Access.)