Counting algebraic numbers in short intervals with rational points

  • Vasily I. Bernik Institute of Mathematics, National Academy of Sciences of Belarus, 11 Surhanava Street, Minsk 220072, Belarus
  • Friedrich Götze Bielefeld University, 25 Universitätsstraße, Bielefeld D­33615, Germany
  • Nikolai I. Kalosha Institute of Mathematics, National Academy of Sciences of Belarus, 11 Surhanava Street, Minsk 220072, Belarus

Abstract

In 2012 it was proved that real algebraic numbers follow a non­uniform but regular distribution, where the respective definitions go back to H. Weyl (1916) and A. Baker and W. Schmidt (1970). The largest deviations from the uniform distribution occur in neighborhoods of rational numbers with small denominators. In this article the authors are first to specify a gene ral condition that guarantees the presence of a large quantity of real algebraic numbers in a small interval. Under this condition, the distribution of real algebraic numbers attains even stronger regularity properties, indicating that there is a chance of proving Wirsing’s conjecture on approximation of real numbers by algebraic numbers and algebraic integers.

Author Biographies

Vasily I. Bernik, Institute of Mathematics, National Academy of Sciences of Belarus, 11 Surhanava Street, Minsk 220072, Belarus

doctor of science (physics and mathematics), full professor; chief researcher at the department of number theory

Friedrich Götze, Bielefeld University, 25 Universitätsstraße, Bielefeld D­33615, Germany

doctor of science (mathematics), full professor

Nikolai I. Kalosha, Institute of Mathematics, National Academy of Sciences of Belarus, 11 Surhanava Street, Minsk 220072, Belarus

PhD (physics and mathematics); researcher at the department of number theory

References

  1. Weyl H. Über die Gleichverteilung von Zahlen mod. Eins. Mathematische Annalen. 1916;77(3):313–352. DOI: 10.1007/BF01475864.
  2. Kuipers L, Niederreiter H. Uniform distribution of sequences. New York: Wiley; 1974. 390 p.
  3. Baker A, Schmidt WM. Diophantine approximation and Hausdorff dimension. Proceedings of the London Mathematical Society. 1970;21:1–11. DOI: 10.1112/plms/s3­21.1.1.
  4. Bernik VI. Application of the Hausdorff dimension in the theory of Diophantine approximations. American Mathematical Society Translations. 1988;40:15– 44.
  5. Khintchine A. Einige sätze über kettenbrüche, mit anwendungen auf die theorie der Diophantischen approximationen. Mathematische Annalen. 1924;92(1–2):115–125. DOI: 10.1007/BF01448437.
  6. Bernik VI. O tochnom poryadke priblizheniya nulya znacheniyami tselochislennykh mnogochlenov [The exact order of approximating zero by values of integral polynomials]. Acta Arithmetica. 1989;53(1):17–28. Russian.
  7. Bernik VI, Dodson MM. Metric Diophantine Approximation on Manifolds. Cambridge: Cambridge University Press; 1999. 172 p. (Cambridge Tracts in Mathematics; 137).
  8. Beresnevich VV. A Groshev type theorem for convergence on manifolds. Acta Mathematica Hungarica. 2002;94(1–2):99 –130.
  9. Bernik VI, Kleinbock D, Margulis GA. Khintchine­type theorems on manifolds: the convergence case for standard and multiplicative versions. International Mathematics Research Notices. 2001;9:453– 486.
  10. Beresnevich VV, Bernik VI, Kleinbock D, Margulis GA. Metric Diophantine approximation: The Khintchine – Groshev theorem for nondegenerate manifolds. Moscow Mathematical Journal. 2002;2(2):203–225.
  11. Bernik VI, Götze F. Distribution of real algebraic numbers of arbitrary degree in short intervals. Izvestiya: Mathematics. 2015;79(1):18–39. DOI: 10.1070/IM2015v079n01ABEH002732.
  12. Kaliada D. Ab razmerkavanni rjechaisnyh algebraichnyh likaw dadzenaj stupeni [Distribution of real algebraic numbers of a given degree]. Doklady Natsional’noi akademii nauk Belarusi. 2012;56(3):28–33. Belarusian.
  13. Bugeaud Y. Approximation by Algebraic Numbers. Cambridge: Cambridge University Press; 2004. 290 p. (Cambridge Tracts in Mathematics; 160). DOI: 10.2277/0521823293.
  14. Bernik VI, Götze F, Gusakova AG. On points with algebraically conjugate coordinates close to smooth curves. Moscow Journal of Combinatorics and Number Theory. 2016;6(2–3):57–100.
  15. Cassels JWS. An Introduction to Diophantine Approximation. Cambridge: Cambridge University Press; 1957. 168 p. (Cambridge Tracts in Mathematics and Mathematical Physics; 45).
  16. Sprindzhuk VG. Problema Malera v metricheskoi teorii chisel [Mahler’s problem in metric number theory]. Minsk: Nauka i tekhnika; 1967. 184 p. Russian.
Published
2019-04-08
Keywords: algebraic number, Diophantine approximation, uniform distribution, Dirichlet’s theorem, Khinchine’s theorem
How to Cite
Bernik, V. I., Götze, F., & Kalosha, N. I. (2019). Counting algebraic numbers in short intervals with rational points. Journal of the Belarusian State University. Mathematics and Informatics, 1, 4-11. https://doi.org/10.33581/2520-6508-2019-1-4-11
Section
Mathematical Logic, Algebra and Number Theory