On the permutability of Sylow subgroups with derived subgroups of B-subgroups

  • Ekaterina V. Zubei Francisk Skorina Gomel State University, 104 Saveckaja Street, Gomel 246007, Belarus

Abstract

A finite non-nilpotent group G is called a B-group if every proper subgroup of the quotient group  G/Φ(G) is nilpotent. We establish the r-solvability of the group in which some Sylow r-subgroup permutes with the derived subgroups of 2-nilpotent (or 2-closed) B-subgroups of even order and the solvability of the group in which the derived subgroups of 2-closed and 2-nilpotent B-subgroups of even order are permutable.

Author Biography

Ekaterina V. Zubei, Francisk Skorina Gomel State University, 104 Saveckaja Street, Gomel 246007, Belarus

postgraduate student at the department of algebra and geometry, faculty of mathematics and programming technologies

References

  1. Shmidt OJu. [Groups, whose all subgroups are special]. Matematicheskii sbornik. 1924;31(3– 4):366 –372. Russian.
  2. Kuzennyi NF, Levishhenko SS. Schmidt’s finite groups and their generalizations. Ukraïns’kyj matematychnyj zhurnal. 1991;43(7–8):963–968. Russian.
  3. Monakhov VS. [The Schmidt subgroups, its existence, and some of their classes]. In: Trudy Ukrainskogo matematicheskogo kongressa: sbornik trudov. Kiev: Institute of Mathematics of National Academy of Sciences of Ukraine; 2002. p. 81– 90. Russian.
  4. Berkovich YaG, Pal’chik JeM. [On the commutability of subgroups of afinite group]. Sibirskii matematicheskii zhurnal. 1967;8(4):741–753. Russian.
  5. Knyagina VN, Monakhov VS. On permutability of Sylow subgroups with Schmidt subgroups. Trudy Instituta matematiki i mekhaniki Ural’skogo otdelenija Rossijskoj akademii nauk. 2010;16(3):130 –139. Russian.
  6. Knyagina VN, Monakhov VS. On the permutability of maximal subgroups with Schmidt subgroups. Trudy Instituta matematiki i mekhaniki Ural’skogo otdelenija Rossijskoj akademii nauk. 2011;17(4):126 –133. Russian.
  7. Knyagina VN, Monakhov VS. On the permutability of n-maximal subgroups with Schmidt subgroups. Trudy Instituta matematiki i mekhaniki Ural’skogo otdelenija Rossijskoj akademii nauk. 2012;18(3):125–130. Russian.
  8. Monakhov VS. [Finite groups with a given set of Schmidt subgroups]. Matematicheskie zametki. 1995;58(5):717–722. Russian.
  9. Kniahina VN, Monakhov VS. [Finite groups with subnormal Schmidt subgroups]. Sibirskii matematicheskii zhurnal. 2004;45(6):1316 –1322. Russian.
  10. Kniahina VN, Monakhov VS. [Finite groups with seminormal Schmidt subgroups]. Algebra i logika. 2007;46(4):448– 458. Russian.
  11. Vedernikov VA. [Finite groups with subnormal Schmidt subgroups]. Algebra i logika. 2007;46(6):669 – 687. Russian.
  12. Kniahina VN, Monakhov VS. Finite groups with Hall Schmidt subgroups. Publicationes Mathematicae Debrecen. 2012;81(3– 4):341–350.
  13. Al-Sharo KhA, Skiba AN. On finite groups with s-subnormal Schmidt subgroups. Communications in Algebra. 2017;45(10):4158– 4165. DOI: 10.1080/00927872.2016.1236938.
  14. Berkovich Y, Janko Z. Groups of Prime Power Order. Volume 3. Berlin: Walter de Gruyter; 2011.
  15. Kniahina VN. On the product of a B-group and a primary group. Problems of Physics, Mathematics and Technics. 2017;3(32):52–57. Russian.
  16. Huppert B. Endliche Gruppen I. Berlin: Springer-Verlag; 1967. DOI: 10.1007/978-3-642-64981-3.
  17. Monakhov VS. Vvedenie v teoriju konechnyh grupp i ih klassov [Introduction to the theory of finite groups and their classes]. Minsk: Vyshjejshaja shkola; 2006. Russian.
  18. Monakhov VS. [On Schmidt subgroups of finite groups]. Voprosy algebry. 1998;13:153–171. Russian.
  19. Skiba AN. H-permutable subgroups. Izvestiya Gomel’skogo gosudarstvennogo universiteta. 2003;4:37–39.
  20. Guo W, Shum KP, Skiba AN. X-semipermutable subgroups of finite groups. Journal of Algebra. 2007;315(1):31– 41. DOI: 10.1016/j.jalgebra.2007.06.002.
  21. Burichenko VP. [On groups whose small- order elements generate a small subgroup]. Matematicheskie zametki. 2012;92(3):361–367. Russian. DOI: 10.4213/mzm8972.
Published
2019-04-08
Keywords: finite group, r-solvable group, Sylow subgroup, B-group, the derived subgroup, permutable subgroups
How to Cite
Zubei, E. V. (2019). On the permutability of Sylow subgroups with derived subgroups of B-subgroups. Journal of the Belarusian State University. Mathematics and Informatics, 1, 12-17. https://doi.org/10.33581/2520-6508-2019-1-12-17
Section
Mathematical Logic, Algebra and Number Theory