Quasinormal Fitting classes of finite groups
Abstract
Let P be the set of all primes, Zn a cyclic group of order n and X wr Zn the regular wreath product of the group X with Zn. A Fitting class F is said to be X-quasinormal (or quasinormal in a class of groups X ) if F ⊆ X, p is a prime, groups G ∈ F and G wr Zp ∈ X, then there exists a natural number m such that G m wr Zp ∈ F. If X is the class of all soluble groups, then F is normal Fitting class. In this paper we generalize the well-known theorem of Blessenohl and Gaschütz in the theory of normal Fitting classes. It is proved, that the intersection of any set of nontrivial X-quasinormal Fitting classes is a nontrivial X-quasinormal Fitting class. In particular, there exists the smallest nontrivial X-quasinormal Fitting class. We confirm a generalized version of the Lockett conjecture (in particular, the Lockett conjecture) about the structure of a Fitting class for the case of X-quasinormal classes, where X is a local Fitting class of partially soluble groups.
References
- Doerk K, Hawkes T. Finite Soluble Groups. Berlin: Walter de Gruyter; 1992.
- Laue H. Über nichtauflösbare normale Fittingklassen. Journal of Algebra. 1977;45(2):274 –283. DOI: 10.1016/0021-8693(77)90327-1.
- Blessenohl D, Gaschütz W. Über normale Schunck- und Fittingklassen. Mathematische Zeitschrift. 1970;118(1):1– 8. DOI: 10.1007/BF01109888.
- Makan AR. Fitting classes with the wreath product property are normal. Journal of the London Mathematical Society. 1974;s2-8(2):245–246. DOI: 10.1112/jlms/s2-8.2.245.
- Hauck P. Zur Theorie der Fittingklassen endlicher auflösbarer Gruppen [dissertation]. Mainz: [s. n.]; 1977.
- Martsinkevich AV. [On the problem of Doerk and Hawkes for locally normal Fitting classes]. Problemy fiziki, matematiki i tekhniki. 2018;4(37):90 – 97. Russian.
- Lockett FP. The Fitting class F*. Mathematische Zeitschrift. 1974;137(2):131–136. DOI: 10.1007/BF01214854.
- Vorob’ev NT. [On Hawkes’s conjecture for radical classes]. Sibirskii matematicheskii zhurnal. 1996;37(6):1296 –1302. Russian.
- Bryce RA, Cossey J. A problem in the theory of normal Fitting classes. Mathematische Zeitschrift. 1975;141(2):99 –110. DOI: 10.1007/BF01218821.
- Beidleman JC, Hauck P. Über Fittingklassen und die Lockett-vermutung. Mathematische Zeitschrift. 1979;167(2):161–167. DOI: 10.1007/BF01215119.
- Vorob’ev NT. Radical classes of finite groups with the Lockett condition. Mathematical Notes. 1988;43(2):161–168. Russian.
- Zhu L, Yang N, Vorob’ev NT. On Lockett pairs and Lockett conjecture for π-soluble Fitting classes. Bulletin of the Malaysian Mathematical Sciences Society. 2013;36(3):825 – 832.
- Bryce RA, Cossey J. Subgroup closed Fitting classes are formations. Mathematical Proceedings of the Cambridge Philosophical Society. 1982;91(2):225–258. DOI: 10.1017/S0305004100059272.
- Vorob’ev NT. [Locality of solvable subgroup-closed Fitting classes]. Matematicheskie zametki. 1992;51(3):3–8. Russian.
- Hauck P. Fittingklassen und Kranzprodukte. Journal of Algebra. 1979;59(2):313–329. DOI: 10.1016/0021-8693(79)90130-3.
- Guo W, Liu X, Li B. On F-radicals of finite π-soluble groups. Algebra and Discrete Mathematics. 2006;3:49 –54.
- Vorob’ev NT. [On maximal and minimal group functions of local Fitting classes]. Voprosy algebry. 1992;7:60 – 69. Russian.
- Frick M, Newman MF. Soluble linear groups. Bulletin of the Australian Mathematical Society. 1972;6(1):31– 44. DOI: 10.1017/S0004972700044233.
- Zalesskaya EN, Vorob’ev NN. [Lattices of partially local Fitting classes]. Sibirskii matematicheskii zhurnal. 2009;50(6):1319 –1327. Russian.
- Chunikhin SA. Podgruppy konechnykh grupp [Subgroups of finite groups]. Minsk: Nauka i tekhnika; 1964. 157 p. Russian.
- Pérez-Ramos MD. On A-normality, strong normality and F-dual pronormal subgroups in Fitting classes. Journal of Group Theory. 2000;3(2):127–145. DOI: 10.1515/jgth.2000.011.
Copyright (c) 2019 Journal of the Belarusian State University. Mathematics and Informatics

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who are published in this journal agree to the following:
- The authors retain copyright on the work and provide the journal with the right of first publication of the work on condition of license Creative Commons Attribution-NonCommercial. 4.0 International (CC BY-NC 4.0).
- The authors retain the right to enter into certain contractual agreements relating to the non-exclusive distribution of the published version of the work (e.g. post it on the institutional repository, publication in the book), with the reference to its original publication in this journal.
- The authors have the right to post their work on the Internet (e.g. on the institutional store or personal website) prior to and during the review process, conducted by the journal, as this may lead to a productive discussion and a large number of references to this work. (See The Effect of Open Access.)