On the approximation of conjugate functions and their derivatives on the segment by partial sums of Fourier – Chebyshev series
Abstract
In this paper, we study the approximation of conjugate functions with the density f є H (α)[–1, 1], α є (0, 1], on the segment [–1, 1], by the conjugate Fourier – Chebyshev series. We establish the order estimations of the approximation depending on the location of a point on the segment. It is noted that approximation at the endpoints of the segment has a higher rate of decrease in comparison with the whole segment. We introduce classes of functions, which, in a certain sense, can be associated with the derivative of a conjugate function on the segment [–1, 1], and the approximation of functions from these classes by partial sums of the Fourier – Chebyshev series is studied. An integral representation of the approximation is found. In the case when the density f є W1H (α)[–1, 1], α є (0, 1], the order estimations of the approximation, depending on the location of the point on the segment, are established. The case, when the density f (t) = |t|s, s > 1 is considered. In this case, an integral representation of the approximation, estimations for pointwise and uniform approximations, as well as an asymptotic estimation for the uniform approximation are obtained. It is noted that the order of the uniform approximations of the function under study by partial sums of the Fourier – Chebyshev series and the corresponding conjugate function by conjugate sums coincide.
References
- Gakhov FD. Kraevye zadachi [Boundary value problems]. Moscow: Gosudarstvennoe izdatel’stvo fiziko-matematicheskoi literatury; 1958. 545 p. Russian.
- Muskhelishvili NI. Singulyarnye integral’nye uravneniya [Singular integral equations]. 3rd edition. Moscow: Nauka; 1968. 600 p. Russian.
- Butzer PL, Stens RL. The operational properties of the Chebyshev transform. II. Fractional derivatives. In: Stechkin SB, Telyakovskii SA, editors. Teoriya priblizheniya funktsii. Trudy Mezhdunarodnoi konferentsii po teorii priblizheniya funktsii; 24–28 iyulya 1975 g.; Kaluga, Rossiya [Function approximation theory. Proceedings of the International conference on the theory of approximation of functions; 1975 July 24–28; Kaluga, Russia]. Moscow: Nauka; 1977. p. 49–61.
- Priwaloff J. Sur les fonctions conjuguées. Bulletin de la Société Mathématique de France. 1916;44:100–103. French. DOI: 10.24033/bsmf.965.
- Priwaloff J. Sur les séries trigonométriques сonjuguées. Matematicheskii sbornik. 1923;31(2):224–228. Russian.
- Kolmogoroff A. Sur les fonctions harmoniques conjuguées et les séries de Fourier. Fundamenta Mathematicae. 1925;7:24–29. French. DOI: 10.4064/fm-7-1-24-29.
- Riesz M. Les fonctions conjuguées et les series de Fourier. Comptes rendus de l’Academie des Sciences. 1924;178:1464–1467. French.
- Riesz M. Sur les fonctions conjuguées. Mathematische Zeitschrift. 1928;27:218–244. DOI: 10.1007/BF01171098. French.
- Nikol’skii SM. Approximations of periodic functions by trigonometrical polynomials. Trudy Matematicheskogo instituta imeni V. A. Steklova. 1945;15:3–76. Russian.
- Motornyi VP. Approximation of certain classes of singular integrals by algebraic polynomials. Ukrains’kyi matematychnyi zhurnal. 2001;53(3):331–345. Russian.
- Motornyi VP. Approximation of a class of singular integrals by algebraic polynomials with regard to the location of a point on an interval. Trudy Matematicheskogo instituta imeni V. A. Steklova. 2001;232:268–285. Russian.
- Misiuk VR, Pekarskii AA. Conjugate functions on a segment and relations for their best uniform polynomial approximations. Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series. 2015;2:37–40. Russian.
- Bari NK. On best approximation of two conjugate functions by trigonometric polynomials. Izvestiya Akademii nauk SSSR. Seriya matematicheskaya. 1955;19(5):285–302. Russian.
- Stechkin SB. On best approximation of conjugate functions by trigonometric polynomials. Izvestiya Akademii nauk SSSR. Seriya matematicheskaya. 1956;20(2):197–206. Russian.
- Nikolsky SM. On the best approximation of functions satisfying Lipschitz’s conditions by polynomials. Izvestiya Akademii nauk SSSR. Seriya matematicheskaya. 1946;10(4):295–322. Russian.
- Timan AF. Approximation of functions satisfying the Lipschitz condition by ordinary polynomials. Doklady Akademii nauk SSSR. 1951;77(6):969–972. Russian.
- Ganzburg IM. A generalization of some results obtained by S. M. Nikolsky and A. F. Timan. Doklady Akademii nauk SSSR. 1957;116(5):727–730. Russian.
- Rusetskii YuI. The approximation of functions continuous on an interval by Abel – Poisson sums. Sibirskii matematicheskii zhurnal. 1968;9(1):136–144. Russian.
- Ganzburg IM, Timan AF. Linear processes of approximation by algebraic polynomials to functions satisfying a Lipschitz condition. Izvestiya Akademii nauk SSSR. Seriya matematicheskaya. 1958;22(6):771–810. Russian.
- Rovba YA, Patseika PG. Approximations of conjugate functions by partial sums of conjugate Fourier series with respect to a certain system of Chebyshev – Markov algebraic fractions. Izvestiya vysshikh uchebnykh zavedenii. Matematika. 2020;9:68–84. Russian.
- Stepanets AI. Approximation of periodic functions by Fourier sums. Trudy Matematicheskogo instituta imeni V. A. Steklova. 1987;180:202–204. Russian.
- Каlchuk IV, Stepaniuk TA, Grabova UZ. Approximation of differentiable functions by Poisson’s biharmonic integrals. Vesnik Brjesckaga universitjeta. Seryja 4, Matjematyka. Fizika. 2010;1:83–92. Russian.
- Stechkin SB. On best approximation of certain classes of periodic functions by trigonometric polynomials. Izvestiya Akademii nauk SSSR. Seriya matematicheskaya. 1956;20(5):643–648. Russian.
- Dzyadyk VK. On best approximation in classes of periodic functions defined by integrals of a linear combination of absolutely monotonic kernels. Matematicheskie zametki. 1974;16(5):691–701. Russian.
- Zhigallo KM, Kharkevich YuІ. Approximation by biharmonious Poisson integrals of classes ( ) y b , of differential functions in the integral metric. Problemy teorii’ nablyzhennja ta sumizhni pytannja. Prac’ Instytutu matematyky NAN Ukrai’ny. 2004;1(1):144–170. Ukrainian.
- Kharkevich YuI, Stepanyuk TA. Approximation properties of Poisson integrals for the classes C H by a. Matematicheskie zametki. 2014;96(6):939–952. Russian.
- Besov OV. Estimate of the approximation of periodic functions by Fourier series. Matematicheskie zametki. 2006;79(5):784–787. Russian.
- Besov OV. Lektsii po matematicheskomu analizu [Lectures on mathematical analysis]. 4th edition. Moscow: Fizmatlit; 2020. 476 p. Russian.
- Evgrafov MA. Asimptoticheskie otsenki i tselye funktsii [Asymptotic estimates and entire functions]. Moscow: Nauka; 1979. 320 p. Russian.
- Fedoryuk MV. Asimptotika. Integraly i ryady [Asymptotics. Integrals and series]. Moscow: Nauka; 1987. 544 p. Russian.
- Potseiko PG. On conjugate Abel – Poisson means on a segment and their approximation properties. Vesnik Grodzenskaga dzjarzhawnaga wniversitjeta imja Janki Kupaly. Seryja 2, Matjematyka. Fizika. Infarmatyka, vylichal’naja tjehnika i kiravanne. 2021;11(2): 15–29. Russian.
Copyright (c) 2024 Journal of the Belarusian State University. Mathematics and Informatics

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who are published in this journal agree to the following:
- The authors retain copyright on the work and provide the journal with the right of first publication of the work on condition of license Creative Commons Attribution-NonCommercial. 4.0 International (CC BY-NC 4.0).
- The authors retain the right to enter into certain contractual agreements relating to the non-exclusive distribution of the published version of the work (e.g. post it on the institutional repository, publication in the book), with the reference to its original publication in this journal.
- The authors have the right to post their work on the Internet (e.g. on the institutional store or personal website) prior to and during the review process, conducted by the journal, as this may lead to a productive discussion and a large number of references to this work. (See The Effect of Open Access.)