Phase composition of hypereutectic silumin at rapid solidification

  • Vasily G. Shepelevich Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus https://orcid.org/0000-0002-5899-1690
  • Olga V. Gusakova International Sakharov Environmental Institute, Belarusian State University, 23 Daŭhabrodskaja Street, Minsk 220170, Belarus https://orcid.org/0000-0002-9796-4476
  • Dmitry V. Alexandrov Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira Street, Ekaterinburg 620002, Russia https://orcid.org/0000-0002-6628-745X
  • Ilya O. Starodumov Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira Street, Ekaterinburg 620002, Russia https://orcid.org/0000-0001-6397-488X

Abstract

The paper presents the results of the study of the phase composition of hypereutectic silumin Al – 16.0 at. % Si – 0.2 at. % Fe. A comparative analysis of the phase composition of samples obtained at an average melt cooling rate of 102 K/s and at an ultra-high melt cooling rate of 105 K /s was carried out. At an average rate, the samples solidified in a graphite mold, and the ultra-high melt cooling rate was provided during the production of foils by the method of ultrafast quenching from the melt. It was established by X-ray diffraction and micro X-ray spectral analysis that the rapidly solidified foils consist of an aluminum-based solid solution supersaturated by silicon, dispersed silicon particles and the AlFeSi2 ternary compound phase. Comparative analysis of the results of X-ray diffraction and X-ray spectral studies of samples obtained at different melt cooling rates indicate that, during rapid solidification, the aluminum-based supersaturated solid solution contains up to 2 at. % Si.

Author Biographies

Vasily G. Shepelevich, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

doctor of science (physics and mathematics), full professor; professor at the department of solid-state physics, faculty of physics

Olga V. Gusakova, International Sakharov Environmental Institute, Belarusian State University, 23 Daŭhabrodskaja Street, Minsk 220170, Belarus

PhD (physics and mathematics), docent; associate professor at the department of nuclear and radiation safety, faculty of environmental monitoring

Dmitry V. Alexandrov, Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira Street, Ekaterinburg 620002, Russia

doctor of science (physics and mathematics), full professor; professor at the department of theoretical and mathematical physics, Institute of Natural Sciences and Mathematics

Ilya O. Starodumov, Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira Street, Ekaterinburg 620002, Russia

junior researcher at the laboratory of multiscale mathematical modeling, Institute of Natural Sciences and Mathematics

References

  1. Haizhi Ye. An overview of the development of Al-Si-Alloy Based Material for Engine Applications Haizhi. Journal of Materials Engineering and Performance. 2003;12(3):288–297. DOI: 10.1361/105994903770343132.
  2. Francisco C. Robles-Hernandez, Jose Martin Herrera Ramírez, Mackay R. Al­Si alloys automotive, aeronautical, and aerospace applications. [Place unknown]: Springer; 2017. DOI: 10.1007/978-3-319-58380-8.
  3. Darlapudi A, McDonald SD, Terzi S, Prasad A, Felberbaum M, Stjohn DH. The influence of ternary alloying elements on the Al-Si eutectic microstructure and the Si morphology. Journal of Crystal Growth. 2016;433:63–73. DOI: 10.1016/j.jcrysgro.2015.10.002.
  4. Wenyi L, Wenlong X, Cong X, Maowen L, Chaoli M. Synergistic effects of Gd and Zr on grain refinement and eutectic Si modification of Al-Si cast alloy. Materials Science and Engineering A. 2017;693:93–100. DOI: 10.1016/j.msea.2017.03.097.
  5. Li JH, Wang XD, Ludwig TH, Tsunekawa Y, Arnberg L, Jiang JZ, et al. Modification of eutectic Si in Al-Si alloys with Eu addition. Acta Materialia. 2015;84:153–163. DOI: 10.1016/j.actamat.2014.10.064.
  6. Volochko AT. Modification of eutectic and primary particles of silicon in silumins. Development prospects. Lit’e i metallurgiya. 2015;4(81):38– 44. Russian.
  7. Kaiqi H, Xia M, Tong G, Qingfei X, Zhao Q, Yuying W, Xiangfa L, et al. Morphological transformation mechanism of eutectic Si phases in Al-Si alloys by nano-AlNp. Journal of Alloys and Compounds. 2018;765:113–120. DOI: 10.1016/j.jallcom.2018.06.223.
  8. Wang K, Jiang HY, Wang QD, Ye B, Ding WJ. Nanoparticle-induced nucleation of eutectic silicon in hypoeutectic Al-Si alloy. Materials Characterization. 2016;117:41– 46. DOI: 10.1016/j.matchar.2016.04.016.
  9. Marukovich EI, Stetsenko VYu. Modifitsirovanie splavov [Modification of alloys]. Minsk: Belaruskaja navuka; 2009. 192 p. Russian.
  10. Stetsenko VYu, Rivkin AI, Gutev AP, Konovalov RV. [Modification of silumin by fine-crystalline aluminum alloys]. Vestnik Gomel’skogo gosudarstvennogo tekhnicheskogo universiteta imeni P. O. Sukhogo. 2009;1:21–24. Russian.
  11. Roehling JD, Coughlin DR, Gibbs JW, Baldwin JK, Mertens JCE, Campbell GH, et al. Rapid solidification growth mode transitions in Al-Si alloys by dynamic transmission electron microscopy. Acta Materialia. 2017;131:22–30. DOI: 10.1016/j.actamat.2017.03.061.
  12. Li JH, Zarif MZ, Albu M, McKay BJ, Hofer F, Schumacher P. Nucleation kinetics of entrained eutectic Si in Al-5Si alloys. Acta Materialia. 2014;72:80 – 98. DOI: 10.1016/j.actamat.2014.03.030.
  13. Alexandrov DV, Galenko PK. Selected mode for rapidly growing needle-like dendrite controlled by heat and mass transport. Acta Materialia. 2017;137:64 –70. DOI: 10.1016/j.actamat.2017.07.022.
  14. Shepelevich VG, Gusakova OV, Shcherbachenko LP. Structure and properties of rapidly solidified Sn – 58 wt. % Bi foils. Neorganicheskie materialy. 2013;49(7):709–713. DOI: 10.7868/S0002337X13060122.
  15. Rios CT, Santos S, Botta WJ, Bolfarini C. Microstructural characterization of As-quenched and heat treated Al-Si-Mg melt-spun ribbons. Journal of Metastable and Nanocrystalline Materials. 2004;22:103–108. DOI: 10.4028/www.scientific.net/JMNM.22.103.
  16. Uzun O, Karaaslan T, Keskin M. Production and structure of rapidly solidified Al-Si alloys. Turkish Journal of Physics. 2001;25:455– 466.
  17. Bendijk A, Delhez R, Katgerman L, De Keijser ThH, Mittemeijer EJ, Van Der Pers NM. Characterization of Al-Si-alloys rapidlyquenched from the melt. Journal of Materials Science. 1980;15(11):2803–2810. DOI: 10.1007/BF00550549.
  18. Belov NA, Savchenko SI, Khvan AV. Fazovyi sostav i struktura siluminov [Phase composition and structure of silumins]. Moscow: MISiS; 2007. Russian.
  19. Goldstein JI, Yakowitz H, editors. Practical scanning electron microscopy. Boston: Springer; 1975. 581 p. DOI: 10.1007/978-1-4613-4422-3.
  20. Russian edition: Goldstein J, Yakowitz H, editors. Prakticheskaya rastrovaya elektronnaya mikroskopiya. Petrov VI, translator. Moscow: Mir; 1978. 656 p. Russian.
  21. Kiv AE, Fuks D, Moiseenko NV, Solovyov VN. Silicon-Aluminum Bonding in Al Alloys. Computer Modelling and New Technologies. 2002;6(1):47–50.
Published
2019-05-20
Keywords: hypereutectic silumin, rapid solidification, phase composition
Supporting Agencies The work was carried out as part of projects No. Ф18Р-195 of the Belarusian Republican Foundation for Fundamental Research and No. 18-58-00034 Bel_a of the Russian Foundation for Basic Research.
How to Cite
Shepelevich, V. G., Gusakova, O. V., Alexandrov, D. V., & Starodumov, I. O. (2019). Phase composition of hypereutectic silumin at rapid solidification. Journal of the Belarusian State University. Physics, 2, 96-104. https://doi.org/10.33581/2520-2243-2019-2-96-104