Dual invariant Lagrange formulation of electrodynamics

  • Vasilij I. Strazhev Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

Abstract

The dual invariant Lagrange formulation of electrodynamics is based on the Cabibbo – Ferrari introduction of two potentials to the description of electromagnetic field without increase of its degrees of freedom. It is realized through invariance requirement of field tensor under specialized gauge transformations of potentials. The used Lagrangian is dual invariant, simultaneously it is invariant of specialized gauge transformations defined on solutions of Maxwell equations. The same procedure of consideration is realized in the case of dual symmetrical formulation of electrodynamics with electrically charged particles.

Author Biography

Vasilij I. Strazhev, Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

doctor of science (physics and mathematics), full professor; professor at the department of theoretical physics and astrophysics, faculty of physics

References

  1. Castellani E. Duality and ‘particle’democracy. Studies in History and Philosophy of Modern Physics. 2017;59:100 –108. DOI: 10.1016/j.shpsb.2016.03.002.
  2. Cameron RP, Barnett MS. Electric-magnetic symmetry and Noether’s theorem. New Journal of Physics. 2012;14(12):123019. DOI: 10.1088/1367-2630/14/12/123019.
  3. Bliokh KY, Bekshaev AY, Nori F. Dual electromagnetism: helicity, spin, momentum and angular momentum. New Journal of Physics. 2013;15:033026. DOI: 10.1088/1367-2630/15/3/033026.
  4. Bliokh KY, Nori F. Transverse and longitudinal angular momenta of light. Physics Reports. 2015;592:1–38. DOI: 10.1016/j. physrep.2015.06.003.
  5. Cameron RP, Götte JB, Barnett SM, YaoAM. Chirality and the angular momentum of light. Philosophical Transactions of the Royal Society A. 2017;375(2087):20150433. DOI: 10.1098/rsta.2015.0433.
  6. ElbistanM. Optical helicity and Hertz vectors. Physics LettersA. 2018;382(29):1897–1902. DOI: 10.1016/j.physleta.2018.05.012.
  7. Han NY, Biedenharn LC. Manifest dyality invariance in electrodynamics and the Cabibbo – Ferrari theory of magnetic monopoles. Nuovo Cimento A. 1971:2(2):544 –556. DOI: 10.1007/BF02899873.
  8. Strazhev VI, Tomil’chik LM. Elektrodinamika s magnitnym zaryadom [Electrodynamics with magnetic charge]. Minsk: Nauka i tekhnika; 1975. Russian.
  9. Kruglov SI, StrazhevVI. О gruppe vnutrennej simmetrii kvantovoj teorii vektornogo polja obschego tipa. Izvestiya vuzov SSSR. Fizika. 1978;5:41. Russian.
  10. Kresin YuV, Strazhev VI. [Two potential description of the electromagnetic field]. Teoreticheskaya i matematicheskaya fizika. 1978;36:426 – 429. Russian.
  11. Strazhev VI. [Dual symmetry of quantum electrodynamics]. Teoreticheskaya i matematicheskaya fizika. 1972;13(2):200 –208. Russian.
  12. Jackson JD. Classical Electrodynamics. Third edition. New York: John Wiley & Sons; 1999.
  13. SerdjukovAN, Strazhev VI. O dual’no simmetrichnoi formulirovke makroskopicheskoi elektrodinamiki. Izvestiya vuzov SSSR. Fizika. 1980;6:33. Russian.
  14. van Kruining K, Götte JB. The conditions for the preservation of duality symmetry in a linear medium. Journal of Optics. 2016; 18(8):085601. DOI: 10.1088/2040-8978/18/8/085601.
Published
2019-02-10
Keywords: dual symmetry, Cabibbo – Ferrari two potential description, Lagrangian of electromagnetic field
How to Cite
Strazhev, V. I. (2019). Dual invariant Lagrange formulation of electrodynamics. Journal of the Belarusian State University. Physics, 1, 4-7. Retrieved from https://journals.bsu.by/index.php/physics/article/view/1376
Section
Physics of Electromagnetic Phenomena