Exact solutions of wave equa-tions for particles with dipole polarizabilities in the field of a plane electromagnetic wave

  • Elena V. Vakulina Branch of the Bryansk State Academician I. G. Petrovski University, 9 Sovietskaya Street, Novozybkov 243020, Russia
  • Nikolay V. Maksimenko Francisk Skaryna Gomel State University, 104 Saveckaja Street, Gomel 246019, Belarus

Abstract

Based on the relativistic-invariant Lagrangian of the interaction of an electromagnetic field with a particle with po-larizabilities, which agrees with the low-energy Compton scattering theorem, covariant equations of motion of these particles in an electromagnetic field are obtained. Exact solutions of the relativistic wave equations of polarized particles of spin 0 and 1/2 in the field of a plane electromagnetic wave are obtained on the basis of first-order differential equations using the general covariant methods of F. I. Fedorov. When solving such a covariant equation for a spin 1/2 particle, the method based on the permutation relations of matrices and the theory of projective operators was used. When solving the covariant equation for spin zero particles in the framework of the Duffin – Kemmer – Petyu theory in the field of a plane electromagnetic wave, methods were used based on the introduction of a natural basis and the properties of the action of matrices in the space of wave functions. The solutions obtained can be used to calculate quantum electrodynamic processes of the interaction of particles in the field of a plane electromagnetic wave and to determine on this basis the polarizabilities of hadrons.

Author Biographies

Elena V. Vakulina, Branch of the Bryansk State Academician I. G. Petrovski University, 9 Sovietskaya Street, Novozybkov 243020, Russia

PhD (physics and mathematics); associate professor at the department of mathematics, physics and informatics

Nikolay V. Maksimenko, Francisk Skaryna Gomel State University, 104 Saveckaja Street, Gomel 246019, Belarus

doctor of science (physics and mathematics); professor at the department of theoretical physics, faculty of physics and information technologies

References

  1. Petrunʼkin VA. [Two-photon interactions of elementary particles at low energies]. Trudy FIAN. 1968;41:165–223. Russian.
  2. Maksimenko NV, Shulga SG. Low-energy expansion of the Compton scattering amplitude on hadron and simultaneous current switches. Yadernaya fizika. 1990;52(2-8):524 –534. Russian.
  3. Raguza S. Third-order spin polarizabilities of the nucleon: I. Physical Review D. 1993;47(9):3757–3767.
  4. Maksimenko NV, Moroz LG. Fenomenologicheskoe opisanie polyarizuemostei elementarnykh chastits v polevoi teorii. In: Mezhdunarodnaya shkola molodykh uchenykh po fizike vysokikh energii i relyativistskoi yadernoi fizike [International School of young scientists in high energy physics and relativistic nuclear physics]. Dubna: Joint Institute for Nuclear Research; 1979. p. 533–543. Russian.
  5. Andreev VV, Maksimenko NV. The polarizability of elementary particles in the field theory approach. Problems of physics, mathematics and technics. 2011;4(9):7–11. Russian.
  6. Vakulina EV, Maksimenko NV. Spin Polarizabilities and Characteristics of Spin-1 Hadrons Related to Parity Nonconser-vation in the Duffin – Kemmer – Petiau Formalism. Physics of Particles and Nuclei Letters. 2017;14(5):713–718. DOI: 10.1134/ S1547477117050120.
  7. Andreev VV, Deryuzhkova OM, Maksimenko NV. Covariant equations of motion of a spin 2 particle in an electromagnetic field with allowance for polarizabilities. Russian Physics Journal. 2014;56(9):1069–1075. DOI: 10.1007/s11182-014-0141-x.
  8. Vakulina EV, Maksimenko NV. Polarizability of pion in Duffin – Kemmer formalism. Problems of physics, mathematics and technics. 2013;3:16 –18. Russian.
  9. Ritus VI. [Quantum effects in the interaction of elementary particles with an intense electromagnetic field]. In: Ginzburg VL, editor. Kvantovaya elektrodinamika yavlenii v intensivnykh polyakh. Trudy FIAN. Tom 111 [Quantum electrodynamics of phenomena in intense fields. Proceedings of the Physical Institute of the Academy of Sciences. Volume 111]. Moscow: Nauka; 1979. p. 5–151. Russian.
  10. Fedorov FI. Gruppa Lorentsa [Lorenz Group]. Minsk: Nauka i tekhnika; 1979. 384 p. Russian.
  11. Raduk AF. [Polarizing particle with spin 1 in the field of a plane electromagnetic wave and in a constant magnetic field]. In: Kovariantnye metody v teoreticheskoi fizike [Covariant methods in theoretical physics]. Minsk: Institut fiziki AN BSSR; 1986. p. 93–101. Russian.
  12. Krylov VB, Raduk AF, Fedorov FI. Spinovye chastitsy v pole ploskoi elektromagnitnoi volny [Spin particles in the field of a plane electromagnetic wave]. [Preprint No. 113]. Minsk: Institut fiziki AN BSSR; 1976. 59 p. Russian.
  13. Beresteckiy VB, Lifshic EM, Pitaevskiy LP. Kvantovaya elektrodinamika [Kvantovaya elektrodinamika]. Moscow: Nauka; 1980. 704 p. Russian.
  14. Volkov DM. Electron in the field of flat unpolarized electromagnetic waves from the point of view of the Dirac equation. Zhur­ nal eksperimental’noi i teoreticheskoi fiziki. 1937;7:1286 –1289. Russian.
  15. Pardy M. Volkov solution for two laser beams and ITER. arXiv:hep-ph /050714141v1.
Published
2019-02-10
Keywords: hadrons, polarizability, Lagrangian, Compton scattering
How to Cite
Vakulina, E. V., & Maksimenko, N. V. (2019). Exact solutions of wave equa-tions for particles with dipole polarizabilities in the field of a plane electromagnetic wave. Journal of the Belarusian State University. Physics, 1, 12-18. Retrieved from https://journals.bsu.by/index.php/physics/article/view/1378
Section
Physics of Electromagnetic Phenomena