Quantum phases for electric charges and electric (magnetic) dipoles: physical meaning and implication

  • Alexander L. Kholmetskii Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus https://orcid.org/0000-0002-5182-315X
  • Oleg V. Missevitch Institute for Nuclear Problems, Belarusian State University, 11 Babrujskaja Street, Minsk 220006, Belarus
  • Tolga Yarman Istanbul Okan University, Tuzla, Akfirat, Istanbul, Turkey

Abstract

We analyse the physical meaning of quantum phase effects for point-like charges and electric (magnetic) dipoles in an electromagnetic (EM) field. At present, there are known eight effects of such a kind: four of them (the magnetic and electric Aharonov – Bohm phases for electrons, the Aharonov – Casher phase for a moving magnetic dipole and the He – McKellar – Wilkens phase for a moving electric dipole) had been disclosed in 20th century, while four new quantum phases had recently been found by our team (A. L. Kholmetskii, O. V. Missevitch, T. Yarman). In our analysis of physical meaning of these phases, we adopt that a quantum phase for a dipole represents a superposition of quantum phases for each charge, composing the dipole. In this way, we demonstrate the failure of the Schrödinger equation for a charged particle in an EM field to describe new quantum phase effects, when the standard definition of the momentum operator is used. We further show that a consistent description of quantum phase effects for moving particles is achieved under appropriate re-definition of this operator, where the canonical momentum of particle in EM field is replaced by the interactional EM field momentum. Some implications of this result are discussed.

Author Biographies

Alexander L. Kholmetskii, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

doctor of science (engineering); chief researcher at the laboratory of scientific instrumentation, department of nuclear physics, faculty of physics

Oleg V. Missevitch, Institute for Nuclear Problems, Belarusian State University, 11 Babrujskaja Street, Minsk 220006, Belarus

PhD (physics and mathematics); leading researcher at the branch laboratory of radiation safety

Tolga Yarman, Istanbul Okan University, Tuzla, Akfirat, Istanbul, Turkey

professor at the department of physics

References

  1. Aharonov Y, Bohm D. Significance of electromagnetic potentials in the quantum theory. Physical Review. 1959;115(3):485–491. DOI: 10.1103/PhysRev.115.485.
  2. Aharonov Y, Bohm D. Further consideration of electromagnetic potentials in the quantum theory. Physical Review. 1961;123(4):1511–1524. DOI: 10.1103/PhysRev.123.1511.
  3. Aharonov Y, Casher A. Topological quantum effects for neutral particles. Physical Review Letters. 1984;53(4):319–321. DOI: 10.1103/PhysRevLett.53.319.
  4. He X-G, McKellar BHJ. Topological phase due to electric dipole moment and magnetic monopole interaction. Physical Review A. 1993;47(4):3424–3425. DOI: 10.1103/PhysRevA.47.3424.
  5. Wilkens M. Quantum phase of a moving dipole. Physical Review Letters. 1994;72(1):5–8. DOI: 10.1103/PhysRevLett.72.5.
  6. Tonomura A, Matsuda T, Suzuki R, Fukuhara A, Osakabe N, Umezakiet H, et al. Observation of Aharonov – Bohm effect by electron holography. Physical Review Letters. 1982;48(21):1443–1446. DOI: 10.1103/PhysRevLett.48.1443.
  7. König M, Tschetschetkin A, Hankiewicz EM, Jairo Sinova, Hock V, Daumer V, et al. Direct observation of the Aharonov – Casher phase. Physical Review Letters. 2006;96(7):076804. DOI: 10.1103/PhysRevLett.96.076804.
  8. Gillot J, Lepoutre S, Gauguet A, Büchner M, Vigué J. Measurement of the He – McKellar – Wilkens topological phase by atom interferometry and test of its independence with atom velocity. Physical Review Letters. 2013;111(3):030401. DOI: 10.1103/PhysRevLett.111.030401.
  9. Batelaan H, Tonomura A. The Aharonov – Bohm effects: variations on a subtle theme. Physics Today. 2009;62(9):38–43. DOI: 10.1063/1.3226854.
  10. Landau LD, Lifshitz EM. Quantum mechanics: non-relativistic theory. Sykes JB, Bell JS, translators. 2nd edition, revised and erlarged. Oxford: Pergamon Press; 1965. [617 p.]. (Course of theoretical physics; volume 3).
  11. Kondo J. Resistance minimum in dilute magnetic alloys. Progress of Theoretical Physics. 1964;32(1):37–49. DOI: 10.1143/PTP.32.37.
  12. Alduschenkov AV, Geraschenko OV, Kholmetskii AL, Lomonosov VA, Mahnach LV, Mashlan M, et al. Mössbauer investigation of superconductors LaFeO0.85F0.15As and high-temperature Kondo effect. Journal of Superconductivity and Novel Magnetism. 2014;27(8):1825–1829. DOI: 10.1007/s10948-014-2531-2.
  13. Alduschenkov AV, Geraschenko OV, Kholmetskii AL, Lomonosov VA, Mahnach LV, Mashlan M, et al. Mössbauer study of superconductors LaFeO0.88F0.12 As. Journal of Superconductivity and Novel Magnetism. 2015;28(9):2657–2662. DOI: 10.1007/s10948-015-3088-4.
  14. Panofsky WKH, Phillips M. Classical electricity and magnetism. 2nd edition. Reading: Addison-Wesley; 1962. [503 p.].
  15. Shockley W, James RP. «Try simplest cases» discovery of «hidden momentum» forces on «magnetic currents». Physical Review Letters. 1967;18(20):876–879. DOI: 10.1103/PhysRevLett.18.876.
  16. Goleman S, Van Vleck JH. Origin of «hidden momentum forces» on magnets. Physical Review. 1968;171(5):1370–1375. DOI: 10.1103/PhysRev.171.1370.
  17. Aharonov Y, Pearle P, Vaidman L. Comment on «proposed Aharonov – Casher effect: another example of an Aharonov – Bohm effect arising from a classical lag». Physical Review A. 1988;37(10):4052–4055. DOI: 10.1103/physreva.37.4052.
  18. Kholmetskii AL, Missevitch OV, Yarman T. Force law in material media and quantum phases. Europhysics Letters (EPL). 2016;113(1):14003. DOI: 10.1209/0295-5075/113/14003.
  19. Kholmetskii AL, Missevitch OV, Yarman T. Force law in material media, hidden momentum and quantum phases. Annals of Physics. 2016;369:139–160. DOI: 10.1016/j.aop.2016.03.004.
  20. Fabrizio M, Morro A. Electromagnetism of continuous media. Oxford: Oxford University Press; 2003. 688 p.
  21. Miffre A, Jacquey M, Büchner M, Trénec G, Vigué J. Atom interferometry measurement of the electric polarizability of lithium. European Physical Journal D. 2006;38(2):353–365. DOI: 10.1140/epjd/e2006-00015-5.
  22. Lepoutre S, Gauguet A, Trenec G, Büchner M, Vigué J. He – McKellar – Wilkens topological phase in atom interferometry. Physical Review Letters. 2012;109(12):120404. DOI: 10.1103/PhysRevLett.109.120404.
  23. Jefimenko OD. Electromagnetic retardation and theory of relativity. 2nd edition. Star City: Electret Scientific Company; 2004. Appendix 1.
  24. Wei H, Han R, Wei X. Quantum phase of induced dipoles moving in a magnetic field. Physical Review Letters. 1995;75(11):2071–2073. DOI: 10.1103/PhysRevLett.75.2071.
  25. Kholmetskii AL, Yarman T. Quantum phases for a charged particle and electric/magnetic dipole in an electromagnetic field. Europhysics Letters (EPL). 2017;120(4):40007. DOI: 10.1209/0295-5075/120/40007.
  26. Kholmetskii AL, Missevitch OV, Yarman T. Quantum phases for point-like charged particles and for electrically neutral dipoles in an electromagnetic field. Annals of Physics. 2018;392:49–62. DOI: 10.1016/j.aop.2018.03.005.
  27. Kholmetskii AL, Yarman T, Missevitch OV, Arik M. Quantum phases for moving charges and dipoles in an electromagnetic field and fundamental equations of quantum mechanics. Scientific Reports. 2018;8:11937. DOI: 10.1038/s41598-018-30423-8.
  28. Landau LD, Lifshitz EM. The classical theory of fields. Hamermesh M, translator. 3rd edition. New York: Pergamon Press; 1971. [387 p.].
Published
2021-02-09
Keywords: quantum phase effects, electric dipole, magnetic dipole, Schrödinger equation, operator of momentum
How to Cite
Kholmetskii, A. L., Missevitch, O. V., & Yarman, T. (2021). Quantum phases for electric charges and electric (magnetic) dipoles: physical meaning and implication. Journal of the Belarusian State University. Physics, 1, 50-61. https://doi.org/10.33581/2520-2243-2021-1-50-61
Section
Physics of Electromagnetic Phenomena