Symmetry properties of a Brownian motor with a sawtooth potential perturbed by harmonic fluctuations

  • Irina V. Shapochkina Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus https://orcid.org/0000-0002-6962-7931
  • Nastassia D. Savina Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus
  • Viktor M. Rozenbaum Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 Generala Naumova Street, Kyiv 03164, Ukraine https://orcid.org/0000-0003-2889-3915
  • Taisiya Ye. Korochkova Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 Generala Naumova Street, Kyiv 03164, Ukraine

Abstract

We present a study of general symmetry properties of a Brownian ratchet model. The study is based both on constructing chains of symmetry transformations reflecting explicit and hidden symmetries of the average ratchet velocity as a functional of the spatially periodic potential energy of a nanoparticle and on taking into account the symmetry types of periodic functions that are components of the potential energy of an additive-multiplicative form. A ratchet with a sawtooth stationary potential profile, dichotomously perturbed by a spatially harmonic signal, is investigated. Conclusions are made on both the possibility of occurrence of the ratchet effect and its direction for given values of the asymmetry parameter of the sawtooth profile, phase shifts of the control component, and frequencies of temporal fluctuations. These conclusions have been obtained only on the basis of symmetry transformations; that demonstrates the predictive value of the approach presented. The results of the symmetry analysis are confirmed by numerical simulation of the functioning of a ratchet with dichotomous stochastic spatially periodic fluctuations of the nanoparticle potential energy.

Author Biographies

Irina V. Shapochkina, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

PhD (physics and mathematics), docent; associate professor at the department of computer modeling, faculty of physics

Nastassia D. Savina, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

student at the faculty of physics

Viktor M. Rozenbaum, Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 Generala Naumova Street, Kyiv 03164, Ukraine

doctor of science (physics and mathematics), full professor; head of the department of theoretical and experimental physics of nanosystems

Taisiya Ye. Korochkova, Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 Generala Naumova Street, Kyiv 03164, Ukraine

PhD (physics and mathematics); senior researcher at the department of theoretical and experimental physics of nanosystems

References

  1. Reimann P. Brownian motors: noisy transport far from equilibrium. Physics Reports. 2002;361(2–4):57–265. DOI: 10.1016/S0370-1573(01)00081-3.
  2. Lau B, Kedem J, Schwabacher D, Kwasnieski D, Weiss EA. An introduction to ratchets in chemistry and biology. Materials Horizons. 2017;4:310–318. DOI: 10.1039/C7MH00062F.
  3. Reimann P. Supersymmetric ratchets. Physical Review Letters. 2001;86(22):4992–4995. DOI: 10.1103/PhysRevLett.86.4992.
  4. Denisov S, Flach S, Hänggi P. Tunable transport with broken space-time symmetries. Physics Reports. 2014;538(3):77–120. DOI: 10.1016/j.physrep.2014.01.003.
  5. Cubero D, Renzoni F. Hidden symmetries, instabilities, and current suppression in Brownian ratchets. Physical Review Letters. 2016;116(1):010602. DOI: 10.1103/PhysRevLett.116.010602.
  6. Rozenbaum VM, Shapochkina IV, Teranishi Y, Trakhtenberg LI. [Symmetry of pulsating ratchets]. Pis’ma v Zhurnal eksperimental’noi i teoreticheskoi fiziki. 2018;107(8):525–531. Russian. DOI: 10.7868/S0370274X18080118.
  7. Rozenbaum VM, Shapochkina IV, Teranishi Y, Trakhtenberg LI. Symmetry of deterministic ratchets. Physal Review E. 2019;100(2):022115. DOI: 10.1103/PhysRevE.100.022115.
  8. Chou C-F, Bakajin O, Turner SWP, Duke TAJ, Chan SS, Cox EC, et al. Sorting by diffusion: a asymmetric obstacle course for continuous molecular separation. Proceedings National Academy of Sciences of the United States of America. 1999;96(24):13762–13765. DOI: 10.1073/pnas.96.24.13762.
  9. Matthias S, Müller F. Asymmetric pores in a silicon membrane acting as massively parallel Brownian ratchets. Nature. 2003;424(6944):53–57. DOI: 10.1038/nature01736.
  10. Cheetham MR, Bramble JP, McMillan DGG, Bushby RJ, Olmsted PD, Jeuken LJC, et al. Manipulation and sorting of membrane proteins using patterned diffusion-aided ratchets with AC fields in supported bilayers. Soft Matter. 2012;8(20):5459–5465. DOI: 10.1039/C2SM25473E.
  11. Roth JS, Zhang Y, Bao P, Cheetham MR, Han X, Evans SD. Optimization of Brownian ratchets for the manipulation of charged components within supported lipid bilayers. Applied Physics Letters. 2015;106(18):183703. DOI: 10.1063/1.4919801.
  12. Hänggi P, Marchesoni F. Artificial Brownian motors: controlling transport on the nanoscale. Review of Modern Physics. 2009;81(1):387–442. DOI: 10.1103/RevModPhys.81.387.
  13. Cubero D, Renzoni F. Brownian ratchets: from statistical physics to bio- and nanomotors. Cambridge: Cambridge University Press; 2016. 200 p.
  14. Rozenbaum VM, Shapochkina IV, Trakhtenberg LI. [Green’s function method in the theory of Brownian motors]. Uspekhi fizicheskikh nauk. 2019;189(5):529–543. Russian. DOI: 10.3367/UFNr.2018.04.038347.
  15. Gulyaev YuV, Bugaev AS, Rozenbaum VM, Trakhtenberg LI. [Nanotransport controlled by means of the ratchet effect]. Uspekhi fizicheskikh nauk. 2020;190(4):337–354. Russian. DOI: 10.3367/UFNr.2019.05.038570.
  16. Rozenbaum VM, Makhnovskii YuA, Shapochkina IV, Sheu S-Y, Yang D-Y, Lin SH. Diffusion of a massive particle in a periodic potential: application to adiabatic ratchets. Physical Review E. 2015;92(6):062132. DOI: 10.1103/PhysRevE.92.062132.
  17. Rozenbaum VM, Shapochkina IV, Sheu S-Y, Yang D-Y, Lin SH. High-temperature ratchets with sawtooth potentials. Physical Review E. 2016;94(5):052140. DOI: 10.1103/PhysRevE.94.052140.
  18. Lee C-S, Janko B, Derenyi I, Barabasi A-L. Reducing vortex density in superconductors using the ratchet effect. Nature. 1999;400(6742):337–340. DOI: 10.1038/22485.
  19. Rozenbaum VM, Shapochkina IV, Teranishi Y, Trakhtenberg LI. High-temperature ratchets driven by deterministic and stochastic fluctuations. Physical Review E. 2019;99(1):012103. DOI: 10.1103/PhysRevE.99.012103.
  20. Ikim MI, Dekhtyar’ ML, Rozenbaum VM, Bugaev AS, Trakhtenberg LI. [Symmetry of Brownian photo motors]. Khimicheskaya fizika. 2020;39(3):80–84. Russian. DOI: 10.31857/S0207401X20030073.
Published
2021-02-09
Keywords: diffusion transport, diffusional dynamics, ratchet systems, Brownian motors, symmetry, sawtooth potential, harmonic fluctuations
Supporting Agencies This work was supported by the Belarusian Republican Foundation for Fundamental Research (project No. F20R-032).
How to Cite
Shapochkina, I. V., Savina, N. D., Rozenbaum, V. M., & Korochkova, T. Y. (2021). Symmetry properties of a Brownian motor with a sawtooth potential perturbed by harmonic fluctuations. Journal of the Belarusian State University. Physics, 1, 41-49. https://doi.org/10.33581/2520-2243-2021-1-41-49